電磁超表面磁超表面electromagnetic metasurface)、超表面metasurface)是指具有亞波長厚度的人造片材。亞波長尺度圖案,可以有結構化,也可以沒結構化。[1][2][3]

液態可調諧電磁超表面

電磁理論中超表面通過特定邊界條件而不是三維空間的本構參數調製電磁波,這在天然材料超材料很常見。超表面也可以指超材料的二維對應物。[4][5]

還有2.5D超表面涉及三維自訂其額外自由度功能。[6]

定義

編輯

研究人員以多種方式定義了超表面。

1,

「An alternative approach that has gained increasing attention in recent years deals with one- and two-dimensional (1D and 2D) plasmonic arrays with subwavelength periodicity, also known as metasurfaces. Due to their negligible thickness compared to the wavelength of operation, metasurfaces can (near resonances of unit cell constituents) be considered as an interface of discontinuity enforcing an abrupt change in both the amplitude and phase of the impinging light」.[7]

近年涉及具亞波長週期性的一維二維等離子體陣列一一「超表面」駸駸日上。由於與操作波長相比,超表面厚度可忽略不計,因此超表面(接近晶胞成分的共振)可視為不連續的介面,迫使撞擊光的振幅和相位驟變。[7]

2,

「Our results can be understood using the concept of a metasurface, a periodic array of scattering elements whose dimensions and periods are small compared with the operating wavelength」.[8]

我們的結果可用超表面的概念理解,超表面是週期性散射元素陣列,其尺寸和週期與工作波長相比很小。[8]

3,

「Metasurfaces based on thin films」. A highly absorbing ultrathin film on a substrate can also be considered as a metasurface, with properties not occurring in natural materials.[3] Following this definition, the thin metallic films such as that in superlens英語superlens are also the early type of metasurfaces.[9]

「基於薄膜的超表面」。基板的高吸收性超薄膜也可認為是超表面,天然材料不存在其特性。[3]根據這定義,超透鏡英語superlens金屬薄膜也是早期超表面類型。[9]

歷史

編輯

電磁超表面的研究由來已久。早在1902年,羅伯特·威廉斯·伍德英語Robert W. Wood就發現亞波長金屬光柵反射光譜具有暗區。這現象命名為伍德異常,並引領在金屬表面激發的特定電磁波,表面等離子體極化激元的發現[10]。隨後,另一重要現象,列維-奇維塔關係發現了亞波長厚膜可導致電磁邊界條件驟變。,[11]

一般來說,超表面可以包括一些傳統微波頻譜概念,例如頻率選擇表面(FSS)、阻抗片、甚至歐姆片。微波條件下,這些超表面的厚度可以遠小於操作波長(例如,波長的1/1000),因為對於高導電金屬來說,集膚深度可能很小。最近,一些新現象證明,如超表面能超寬頻相干。結果表明,0.3nm薄膜可吸收射頻微波太赫茲頻率上的所有電磁波。 [12][13][14]

光學應用中,抗反射塗層英語anti-reflective coating也可以被視為一種簡單的超表面,正如瑞利勳爵首先觀察到的那樣。

近年開發了幾種新超表面,包括等離子體超表面[15][4][7][16][17]、基於幾何相位的超表面[18][19]、基於阻抗片的超表面[20][21]和滑動對稱超表面[22]

應用

編輯

超表面一重要應用是通過向入射波賦予局部梯度相移控制電磁波的波前,推廣古代反射折射定律[18]這樣,超表面可以用作平面透鏡[23][24]、照明透鏡[25]、平面全息圖[26]、渦旋發生器[27]、光束偏轉器、軸心等。[19][28]

除了梯度超表面透鏡外,基於超表面的超透鏡通過使用倏逝波提供了波前的另一種程度控制。利用超薄金屬層中的表面等離子體,可以實現完美的成像和超解像度光刻,這打破了所有光學透鏡系統都受到繞射限制的普遍假設,這種現象稱為繞射極限英語diffraction limit[29][30]

另一有前景的應用是在隱形技術領域。目標的雷達截面英語radar cross-section通常透過輻射吸收材料英語radiation-absorbent material或透過目標的特定形狀縮小,以將散射能量重新引導遠來源。不幸是輻射吸收材料英語radiation-absorbent material頻帶功能很窄,限制了目標空氣動力學性能。但已合成超表面可使用任一陣列理論或廣義斯涅耳定律[31][32]將散射能量從源重定向[33][34][35]。這使得目標具有空氣動力學上有利的形狀並減少降低目標雷達截面英語radar cross-section

超表面還可以與光波導集成,控制引導電磁波。[36][37]可以支援元波導英語meta-waveguide的應用,例如集成波導模式轉換器[37]、結構光生成[38][39]、多功能多路複用器[40][41]和光子神經網絡[42]

此外,超表面還應用於電磁吸收器、偏振轉換器和光譜濾光片。超表面賦能的新型生物成像和生物感測設備也已出現並被報導。[43][44][45][46]

對於許多基於光學的生物成像設備,其體積和沉重的物理重量限制了它們在臨床環境中的使用。[47][48]

模擬

編輯

為有效地分析這種平面光學超表面,基於棱鏡的演算法允許平面幾何形狀最佳的三角稜柱空間離散化。與傳統四面體方法相比,基於稜鏡演算法具更少元素,帶來更高計算效率。[49]模擬工具已在線發佈,用戶能用自定義圖元圖案高效分析超表面。[50]

光學特性

編輯

因為所涉及光學特性通常包括相位偏振特性,表徵光域中的超表面需要先進的成像方法。2020年的研究表明,向量疊印法英語ptychography成像計算成像方法似乎非常相關。即使在大型標本上也將鐘斯矩陣映射與微觀橫向解像度相結合。[51]

參見

編輯


參考

編輯
  1. ^ Bomzon, Ze’ev; Kleiner, Vladimir; Hasman, Erez. Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Optics Letters. 2001-09-15, 26 (18): 1424–1426 [2024-04-29]. Bibcode:2001OptL...26.1424B. ISSN 1539-4794. PMID 18049626. doi:10.1364/OL.26.001424. (原始內容存檔於2024-04-29) (英語). 
  2. ^ Bomzon, Ze’ev; Biener, Gabriel; Kleiner, Vladimir; Hasman, Erez. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Optics Letters. 2002-07-01, 27 (13): 1141–1143 [2024-04-29]. Bibcode:2002OptL...27.1141B. ISSN 1539-4794. PMID 18026387. doi:10.1364/OL.27.001141. (原始內容存檔於2024-04-22) (英語). 
  3. ^ 3.0 3.1 3.2 Yu, Nanfang; Capasso, Federico. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13 (2): 139–150. Bibcode:2014NatMa..13..139Y. PMID 24452357. doi:10.1038/nmat3839. 
  4. ^ 4.0 4.1 Zeng, S.; et al. Graphene-gold metasurface architectures for ultrasensitive plasmonic biosensing. Advanced Materials. 2015, 27 (40): 6163–6169. Bibcode:2015AdM....27.6163Z. PMID 26349431. S2CID 205261271. doi:10.1002/adma.201501754. hdl:20.500.12210/45908 . 
  5. ^ Quevedo-Teruel, O.; et al. Roadmap on metasurfaces. Journal of Optics. 2019, 21 (7): 073002. Bibcode:2019JOpt...21g3002Q. S2CID 198449951. doi:10.1088/2040-8986/ab161d . hdl:10016/33235 . 
  6. ^ Solomonov, A.I.; et al. 2.5D switchable metasurfaces. Optics & Laser Technology. 2023, 161: 109122. Bibcode:2023OptLT.16109122S. S2CID 255887266. doi:10.1016/j.optlastec.2023.109122. 
  7. ^ 7.0 7.1 7.2 Pors, Anders; Bozhevolnyi, Sergey I. Plasmonic metasurfaces for efficient phase control in reflection. Optics Express. 2013, 21 (22): 27438–27451. Bibcode:2013OExpr..2127438P. PMID 24216965. doi:10.1364/OE.21.027438 . 
  8. ^ 8.0 8.1 Li, Ping-Chun; Zhao, Yang; Alu, Andrea; Yu, Edward T. Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface. Appl. Phys. Lett. 2011, 99 (3): 221106. Bibcode:2011ApPhL..99c1106B. doi:10.1063/1.3614557. 
  9. ^ 9.0 9.1 Pendry, J. B. Negative Refraction Makes a Perfect Lens (PDF). Physical Review Letters. 2000, 85 (18): 3966–9 [2015-05-21]. Bibcode:2000PhRvL..85.3966P. PMID 11041972. S2CID 25803316. doi:10.1103/PhysRevLett.85.3966. (原始內容 (PDF)存檔於2016-04-18). 
  10. ^ Wood, R. W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. Phys. Soc. Lond. 1902, 18 (1): 269–275. Bibcode:1902PPSL...18..269W. doi:10.1088/1478-7814/18/1/325. 
  11. ^ Senior, T. Approximate boundary conditions. IEEE Trans. Antennas Propag. 1981, 29 (5): 826–829. Bibcode:1981ITAP...29..826S. doi:10.1109/tap.1981.1142657. hdl:2027.42/20954 . 
  12. ^ Pu, M.; et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Optics Express. 17 January 2012, 20 (3): 2246–2254. Bibcode:2012OExpr..20.2246P. PMID 22330464. doi:10.1364/oe.20.002246 . 
  13. ^ Li, S.; et al. Broadband Perfect Absorption of Ultrathin Conductive Films with Coherent Illumination: Super Performance of Electromagnetic Absorption. Physical Review B. 2015, 91 (22): 220301. Bibcode:2015PhRvB..91v0301L. S2CID 118609773. arXiv:1406.1847 . doi:10.1103/PhysRevB.91.220301. 
  14. ^ Taghvaee, H.R.; et al. Circuit modeling of graphene absorber in terahertz band. Optics Communications. 2017, 383: 11–16. Bibcode:2017OptCo.383...11T. doi:10.1016/j.optcom.2016.08.059. 
  15. ^ Ni, X.; Emani, N. K.; Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Broadband light bending with plasmonic nanoantennas. Science. 2012, 335 (6067): 427. Bibcode:2012Sci...335..427N. PMID 22194414. S2CID 18790738. doi:10.1126/science.1214686 . 
  16. ^ Verslegers, Lieven; Fan, Shanhui. Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film. Nano Lett. 2009, 9 (1): 235–238. Bibcode:2009NanoL...9..235V. PMID 19053795. S2CID 28741710. doi:10.1021/nl802830y. 
  17. ^ Kildishev, A. V.; Boltasseva, A.; Shalaev, V. M. Planar photonics with metasurfaces. Science. 2013, 339 (6125): 1232009 [2024-04-29]. PMID 23493714. S2CID 33896271. doi:10.1126/science.1232009. (原始內容存檔於2024-02-24). 
  18. ^ 18.0 18.1 Yu, Nanfang; Genevet, Patrice; Mikhail Kats; Aieta, Francesco; Tetienne, Jean-Philippe; Capasso, Federico; Gaburro, Zeno. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science. 2011, 334 (6054): 333–337. Bibcode:2011Sci...334..333Y. PMID 21885733. S2CID 10156200. doi:10.1126/science.1210713 . 
  19. ^ 19.0 19.1 Lin, Dianmin; Fan, Pengyu; Hasman, Erez; Brongersma, Mark L. Dielectric gradient metasurface optical elements. Science. 2014, 345 (6194): 298–302. Bibcode:2014Sci...345..298L. PMID 25035488. S2CID 29708554. doi:10.1126/science.1253213. 
  20. ^ Pfeiffer, Carl; Grbic, Anthony. Metamaterial Huygens' Surfaces: Tailoring Wave Fronts with Reflectionless Sheets. Phys. Rev. Lett. 2013, 110 (2): 197401. Bibcode:2013PhRvL.110b7401W. PMID 23383937. S2CID 118458038. arXiv:1206.0852 . doi:10.1103/PhysRevLett.110.027401. 
  21. ^ Felbacq, Didier. Impedance operator description of a metasurface. Mathematical Problems in Engineering. 2015, 2015: 473079. arXiv:1507.07736 . doi:10.1155/2015/473079 . 
  22. ^ Quevedo-Teruel, Oscar; et al. On the benefits of glide symmetries for microwave devices. IEEE Journal of Microwaves. 2021, 1: 457–469. S2CID 231619012. doi:10.1109/JMW.2020.3033847 . 
  23. ^ Aieta, Francesco; Genevet, Patrice; Kats, Mikhail; Yu, Nanfang; Blanchard, Romain; Gaburro, Zeno; Capasso, Federico. Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Letters. 2012, 12 (9): 4932–6. Bibcode:2012NanoL..12.4932A. PMID 22894542. S2CID 5412108. arXiv:1207.2194 . doi:10.1021/nl302516v. 
  24. ^ Ni, X.; Ishii, S.; Kildishev, A.V.; Shalaev, V.M. Ultra-thin, planar, Babinet-inverted plasmonic metalenses (PDF). Light: Science & Applications. 2013, 2 (4): e72 [2024-04-29]. Bibcode:2013LSA.....2E..72N. S2CID 8927737. doi:10.1038/lsa.2013.28. (原始內容存檔 (PDF)於2023-12-02). 
  25. ^ I. Moreno, M. Avendaño-Alejo, and C. P. Castañeda-Almanza, "Nonimaging metaoptics," Opt. Lett. 45, 2744-2747 (2020). https://doi.org/10.1364/OL.391357
  26. ^ Ni, X.; Kildishev, A.V.; Shalaev, V.M. Metasurface holograms for visible light (PDF). Nature Communications. 2013, 4: 1–6 [2024-04-29]. Bibcode:2013NatCo...4.2807N. S2CID 5550551. doi:10.1038/ncomms3807. (原始內容存檔 (PDF)於2023-11-23). 
  27. ^ Genevet, Patrice; Yu, Nanfang; Aieta, Francesco; Lin, Jiao; Kats, Mikhail; Blanchard, Romain; Scully, Marlan; Gaburro, Zeno; Capasso, Federico. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Applied Physics Letters. 2012, 100 (1): 013101. Bibcode:2012ApPhL.100a3101G. doi:10.1063/1.3673334. 
  28. ^ Xu, T.; et al. Plasmonic deflector. Opt. Express. 2008, 16 (7): 4753–4759. Bibcode:2008OExpr..16.4753X. PMID 18542573. doi:10.1364/oe.16.004753 . 
  29. ^ Luo, Xiangang; Ishihara, Teruya. Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 2004, 84 (23): 4780. Bibcode:2004ApPhL..84.4780L. doi:10.1063/1.1760221. 
  30. ^ Fang, Nicholas; Lee, Hyesog; Sun, Cheng; Zhang, Xiang. Sub-Diffraction-Limited Optical Imaging with a Silver Superlens. Science. 2005, 308 (5721): 534–7. Bibcode:2005Sci...308..534F. PMID 15845849. S2CID 1085807. doi:10.1126/science.1108759. 
  31. ^ Li, Yongfeng; Zhang, Jieqiu; Qu, Shaobo; Wang, Jiafu; Chen, Hongya; Xu, Zhuo; Zhang, Anxue. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces. Applied Physics Letters. 2014, 104 (22): 221110. Bibcode:2014ApPhL.104v1110L. doi:10.1063/1.4881935. 
  32. ^ Yu, Nanfang; Genevet, Patrice; Kats, Mikhail A.; Aieta, Francesco; Tetienne, Jean-Philippe; Capasso, Federico; Gaburro, Zeno. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science. October 2011, 334 (6054): 333–337. Bibcode:2011Sci...334..333Y. PMID 21885733. S2CID 10156200. doi:10.1126/science.1210713 . 
  33. ^ Modi, A. Y.; Alyahya, M. A.; Balanis, C. A.; Birtcher, C. R. Metasurface-Based Method for Broadband RCS Reduction of Dihedral Corner Reflectors with Multiple Bounces. IEEE Transactions on Antennas and Propagation. 2019, 68 (3): 1. S2CID 212649480. doi:10.1109/TAP.2019.2940494. 
  34. ^ Modi, A. Y.; Balanis, C. A.; Birtcher, C. R.; Shaman, H. New Class of RCS-Reduction Metasurfaces Based on Scattering Cancellation Using Array Theory. IEEE Transactions on Antennas and Propagation. 2019, 67 (1): 298–308. Bibcode:2019ITAP...67..298M. S2CID 58670543. doi:10.1109/TAP.2018.2878641. 
  35. ^ Modi, A. Y.; Balanis, C. A.; Birtcher, C. R.; Shaman, H. Novel Design of Ultrabroadband Radar Cross Section Reduction Surfaces using Artificial Magnetic Conductors. IEEE Transactions on Antennas and Propagation. 2017, 65 (10): 5406–5417. Bibcode:2017ITAP...65.5406M. S2CID 20724998. doi:10.1109/TAP.2017.2734069. 
  36. ^ Meng, Yuan; Chen, Yizhen; Lu, Longhui; Ding, Yimin; Cusano, Andrea; Fan, Jonathan A.; Hu, Qiaomu; Wang, Kaiyuan; Xie, Zhenwei; Liu, Zhoutian; Yang, Yuanmu. Optical meta-waveguides for integrated photonics and beyond. Light: Science & Applications. 2021-11-22, 10 (1): 235. Bibcode:2021LSA....10..235M. ISSN 2047-7538. PMC 8608813 . PMID 34811345. doi:10.1038/s41377-021-00655-x (英語). 
  37. ^ 37.0 37.1 Li, Zhaoyi; Kim, Myoung-Hwan; Wang, Cheng; Han, Zhaohong; Shrestha, Sajan; Overvig, Adam Christopher; Lu, Ming; Stein, Aaron; Agarwal, Anuradha Murthy; Lončar, Marko; Yu, Nanfang. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nature Nanotechnology. July 2017, 12 (7): 675–683 [2024-04-29]. Bibcode:2017NatNa..12..675L. ISSN 1748-3395. OSTI 1412777. PMID 28416817. doi:10.1038/nnano.2017.50. (原始內容存檔於2023-09-23) (英語). 
  38. ^ Guo, Xuexue; Ding, Yimin; Chen, Xi; Duan, Yao; Ni, Xingjie. Molding free-space light with guided wave–driven metasurfaces. Science Advances. 2020-07-17, 6 (29): eabb4142. Bibcode:2020SciA....6.4142G. ISSN 2375-2548. PMC 7439608 . PMID 32832643. arXiv:2001.03001 . doi:10.1126/sciadv.abb4142 (英語). 
  39. ^ He, Tiantian; Meng, Yuan; Liu, Zhoutian; Hu, Futai; Wang, Rui; Li, Dan; Yan, Ping; Liu, Qiang; Gong, Mali; Xiao, Qirong. Guided mode meta-optics: metasurface-dressed waveguides for arbitrary mode couplers and on-chip OAM emitters with a configurable topological charge. Optics Express. 2021-11-22, 29 (24): 39406–39418. Bibcode:2021OExpr..2939406H. ISSN 1094-4087. PMID 34809306. S2CID 243813207. doi:10.1364/OE.443186  (英語). 
  40. ^ Cheben, Pavel; Halir, Robert; Schmid, Jens H.; Atwater, Harry A.; Smith, David R. Subwavelength integrated photonics. Nature. August 2018, 560 (7720): 565–572 [2024-04-29]. Bibcode:2018Natur.560..565C. ISSN 1476-4687. PMID 30158604. S2CID 52117964. doi:10.1038/s41586-018-0421-7. (原始內容存檔於2024-01-17) (英語). 
  41. ^ Meng, Yuan; Liu, Zhoutian; Xie, Zhenwei; Wang, Ride; Qi, Tiancheng; Hu, Futai; Kim, Hyunseok; Xiao, Qirong; Fu, Xing; Wu, Qiang; Bae, Sang-Hoon; Gong, Mali; Yuan, Xiaocong. Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface. Photonics Research. 2020-04-01, 8 (4): 564. ISSN 2327-9125. S2CID 213576669. doi:10.1364/PRJ.384449 (英語). 
  42. ^ Wu, Changming; Yu, Heshan; Lee, Seokhyeong; Peng, Ruoming; Takeuchi, Ichiro; Li, Mo. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nature Communications. 2021-01-04, 12 (1): 96. Bibcode:2021NatCo..12...96W. ISSN 2041-1723. PMC 7782756 . PMID 33398011. arXiv:2004.10651 . doi:10.1038/s41467-020-20365-z (英語). 
  43. ^ A. Arbabi. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nature Communications. 2016, 7: 13682–89. Bibcode:2016NatCo...713682A. PMC 5133709 . PMID 27892454. arXiv:1604.06160 . doi:10.1038/ncomms13682. 
  44. ^ W. Chen. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology. 2018, 13 (3): 220–226 [2024-04-29]. Bibcode:2018NatNa..13..220C. PMID 29292382. S2CID 205567341. doi:10.1038/s41565-017-0034-6. (原始內容存檔於2024-02-26). 
  45. ^ S. Zhang. Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective. Nanophotonics. 2020, 10 (1): 259–293. Bibcode:2020Nanop..10..373Z. S2CID 225279574. doi:10.1515/nanoph-2020-0373 . hdl:10023/20902 . 
  46. ^ L. Jiang. Multifunctional hyperbolic nanogroove metasurface for submolecular detection. Small. 2017, 13 (30): 1700600–10. PMID 28597602. doi:10.1002/smll.201700600. 
  47. ^ M. Beruete. Terahertz sensing based on metasurfaces. Advanced Optical Materials. 2019, 8 (3): 1900721–28 [2024-04-29]. S2CID 199649103. doi:10.1002/adom.201900721. (原始內容存檔於2024-04-29). 
  48. ^ R. Ahmed. Tunable Fano-resonant metasurfaces on a disposable plastic-template for multimodal and multiplex biosensing. Advanced Materials. 2020, 32 (19): 1907160–78. Bibcode:2020AdM....3207160A. PMC 8713081 . PMID 32201997. doi:10.1002/adma.201907160. hdl:11693/75646. 
  49. ^ Mai, Wending; Campbell, Sawyer D.; Whiting, Eric B.; Kang, Lei; Werner, Pingjuan L.; Chen, Yifan; Werner, Douglas H. Prismatic discontinuous Galerkin time domain method with an integrated generalized dispersion model for efficient optical metasurface analysis. Optical Materials Express. 2020-10-01, 10 (10): 2542–2559. Bibcode:2020OMExp..10.2542M. ISSN 2159-3930. doi:10.1364/OME.399414  (英語). 
  50. ^ Mai, Wending; Werner, Douglas. prism-DGTD with GDM to analyze pixelized metasurfaces. 2020 [2024-04-29]. doi:10.17605/OSF.IO/2NA4F. (原始內容存檔於2024-04-29). 
  51. ^ Song, Qinghua; Baroni, Arthur; Sawant, Rajath; Ni, Peinan; Brandli, Virginie; Chenot, Sébastien; Vézian, Stéphane; Damilano, Benjamin; de Mierry, Philippe; Khadir, Samira; Ferrand, Patrick. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces. Nature Communications. December 2020, 11 (1): 2651. Bibcode:2020NatCo..11.2651S. ISSN 2041-1723. PMC 7253437 . PMID 32461637. doi:10.1038/s41467-020-16437-9 (英語). 

Template:新興技術