蔡勒公式(德語:Zellers Kongruenz),是一種計算任何一日屬一星期中哪一日的演算法,由十九世紀德國數學家克里斯提安·蔡勒推算出來。
-
or
-
公式都是基於公曆的置閏規則來考慮。
公式中的符號含義如下:
- w:星期(計算所得的數值對應的星期:0-星期日;1-星期一;2-星期二;3-星期三;4-星期四;5-星期五;6-星期六)[註 1]
- c:年份前兩位數
- y:年份後兩位數
- m:月(m的取值範圍為3至14,即在蔡勒公式中,某年的1、2月要看作上一年的13、14月來計算,比如2003年1月1日要看作2002年的13月1日來計算)
- d:日
- [ ]:稱作高斯符號,代表向下取整,即,取不大於原數的最大整數。
- mod:同餘(這裏代表括號裏的答案除以7後的餘數)
因為
-
可能為負數,所以當出現負數的情況下不能直接mod 7。編寫成代碼的時候如果兩個操作數中只有一個負數,求模的結果取決於機器,也就是說某些情況下w在一些機器上為負數,但是在某一些機器上w不一定為負數(例如:21%-5的結果取決於機器,可能得到1或-4),對於產生負數這種情況可將原來公式分為兩步:
-
-
若為一月二月,則看作為去年的13月和14月輸入,同時在年份上減一。以上各式中的「%」符號表示取余運算。
對2006年4月4日而言,代入公式算出:
-
-
-
得知為星期二。
若要計算的日期是在1582年10月4日或之前的儒略曆實施年代,公式則為:
-
or
-
這是因羅馬教宗額我略十三世頒佈新曆法(公曆),把1582年10月4日的後一天改為1582年10月15日。此一公式也要注意前述附註中出現負數的情況。