功能性磁共振成像

功能性磁共振成像fMRIfunctional Magnetic Resonance Imaging)是一种神经影像学技术。其原理是利用磁振造影来测量神经元活动所引发之血液动力的改变。由于fMRI的非侵入性和其较少的辐射暴露量,从1990年代开始其就在脑部功能定位领域占有了重要地位。目前,fMRI主要被运用于对及动物的脊髓之研究中。

功能性磁共振成像资料(橘色)叠在数人平均而得的脑部解剖影像(灰阶)上方,显示出受外界刺激时的脑部活化区域。

背景

编辑

自从1890年代开始[1],人们就知道血流与血氧的改变(两者合称为血液动力学)与神经元的活化有着密不可分的关系。神经细胞活化时会消耗氧气,而氧气要借由神经细胞附近的微血管红血球中的血红素运送过来。因此,当脑神经活化时,其附近的血流会增加来补充消耗掉的氧气。从神经活化到引发血液动力学的改变,通常会有1-5秒的延迟,然后在4-5秒达到的高峰,再回到基线(通常伴随着些微的下冲)。这使得不仅神经活化区域的脑血流会改变,局部血液中的去氧与带氧血红素的浓度,以及脑血容积都会随之改变。

历史

编辑
迈克尔·法拉第在1845年的日记中最早注意到干血不具磁性,“必须尝试新的流动血”。对血红蛋白磁性的研究Pauling & Coryell (1945)注意到了这一点。

血氧浓度相依对比英语Blood-oxygen-level-dependent imaging(BOLD)首先由贝尔实验室小川诚二等人于1990年所提出[2],小川博士与其同事很早就了解BOLD对于应用MRI于脑部功能性造影的重要性,但是第一个成功的fMRI研究则是由John W. Belliveau与其同事于1991年透过静脉内造影剂(Gadolinium,Gd,钆)所提出[3]。接着由邝健民等人于1992年发表在人身上的应用[4]。同年,小川博士于4月底提出了他的结果且于7月发表于PNAS。[5]在接下来的几年,小川博士发表了BOLD的生物物理学模型于生物物理学期刊。[5]Bandettini博士也于1993年发表论文示范功能性活化地图的量化测量。[6]

生理学

编辑

由于神经元本身并没有储存所需的葡萄糖氧气,神经活化所消耗的能量必须快速地补充。经由血液动力反应的过程,血液释出葡萄糖氧气的比率相较于未活化神经元区域大幅提升。这导致了过多的带氧血红素充满于活化神经元处,而明显的带氧/缺氧血红素比例变化使得BOLD可作为MRI的测量指标之一。

血红素氧化状态(带氧血红素)的时候为抗磁性的,相对于缺氧血红素为顺磁性的。[7]根据血液中血红素的氧化比率可轻易的分辨出不同的磁共振讯号。血液中带氧血红素的浓度上升,相对的BOLD信号也会随之加强。借由MRI搜集这些血氧浓度相依比讯号可以得知脑部中的血流与氧气消耗量值。虽然这些讯号是极小量的,但仍可以表现出脑部中脑区的活化程度。当脑部正思考或做动作或是接受一种经验过程,可以利用一系列严密的测量来确定哪些脑区是负责思考、运动、经历经验。

几乎大部分的功能性磁共振成像都是用BOLD的方法来侦测脑中的反应区域,但因为这个方法得到的信号是相对且非定量的,使得人们质疑它的可靠性。[8]因此,还有其他能更直接侦测神经活化的方法(像是氧抽取率(Oxygen Extraction Fraction, OEF)这种估算多少带氧血红素被转变成去氧血红素的方法[9];或侦测神经讯号造成的电磁场变化[10])被提出来,但由于神经活化所造成的电磁场变化非常微弱,过低的信杂比使得至今仍无法可靠地统计定量。

BOLD与神经活动的关系

编辑

神经信号与血氧浓度比之间的关系目前正在研究中。一般来说,血氧浓度比跟血流量有一定程度的关联,近几十年来有许许多多的研究指出血流量与代谢率之间的关系[11],也就是说,为了提供养分给神经的代谢所需,血流供应的地点跟时间被严密的控制。

技术

编辑

正电子发射计算机断层扫描(Positron emission tomography),或称之为PET扫描技术的研究,给被试服用不同种放射活性物质(但是很安全),这些物质在脑内被活动的脑细胞吸收。磁共振成像(magnetic resonance imaging, MRI)利用磁场和射频波脑内产生脉冲能量,因为脉冲可调谐到不同频段,使一些原子与磁场偶联。当磁脉冲被关掉的瞬间,这些原子振动共振)并返回到自己的初始态,特殊的射频接收器检测这些共振及其对于计算机的通道信息,据此而产生不同原子在脑区中的定位图像。

功能性磁共振成像(functional magnetic resonance imaging,fMRI)的新技术,将上述两项技术优势结合起来,通过检验血流进入脑细胞的磁场变化而实现脑功能成像,它给出更精确的结构与功能关系。[12]

注释

编辑
  1. ^ Roy CS, Sherrington CS. On the Regulation of the Blood-supply of the Brain. J Physiol. 1890 Jan;11(1-2):85-158.17.
  2. ^ Ogawa, S., Lee, T.M., Nayak, A.S., and Glynn, P. (1990). Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14, 68-78
  3. ^ Belliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, and Rosen BR. Functional mapping of the human visual cortex by magnetic resonance imaging. Science. 1991, 254 (5032): 716–719. PMID 1948051. doi:10.1126/science.1948051. 
  4. ^ KK Kwong, JW Belliveau, DA Chesler, IE Goldberg, RM Weisskoff, BP Poncelet, DN Kennedy, BE Hoppel, MS Cohen, R Turner, H Cheng, TJ Brady, and BR Rosen, Dynamic Magnetic Resonance Imaging of Human Brain Activity During Primary Sensory Stimulation. PNAS, 89:5675-79, 1992
  5. ^ 5.0 5.1 OGAWA S, TANK DW, MENON R, ELLERMANN JM, KIM SG, MERKLE H, UGURBIL K. Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. PNAS. 1992, 89 (13): 5675–79. PMC 402116 . PMID 1631079. 
  6. ^ Bandettini, P.A.; Jesmanowicz, A.; Wong, E.C.; Hyde, J.S. Processing strategies for time-course data sets in functional MRI of the human brain. Magnetic Resonance in Medicine. 1993, 30 (2): 161–173. PMID 8366797. doi:10.1002/mrm.1910300204. 
  7. ^ L Pauling and CD Coryell. The Magnetic Properties and Structure of Hemoglobin, Oxyhemoglobin and Carbonmonoxyhemoglobin. PNAS. 1936, 22 (4): 210–6. PMC 1076743 . PMID 16577697. doi:10.1073/pnas.22.4.210. 
  8. ^ Gusnard DA, Raichle ME. Searching for a baseline: Functional imaging and the resting human brain. Nature Reviews Neuroscience. 2001, 2 (10): 685–694. PMID 11584306. doi:10.1038/35094500. 
  9. ^ Yablonskiy DA, Haacke EM. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magnetic Resonance in Medicine. 1994, 32 (6): 749–63. PMID 7869897. doi:10.1002/mrm.1910320610. 
  10. ^ Konn D, Gowland P, Bowtell R. MRI detection of weak magnetic fields due to an extended current dipole in a conducting sphere: a model for direct detection of neuronal currents in the brain. Magnetic Resonance in Medicine. 2003, 50 (1): 40–49. PMID 12815677. doi:10.1002/mrm.10494. 
  11. ^ Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philosophical Transactions of the Royal Cociety of London. July 1999, 29 (354(1387)): 1155–63. PMC 1692634 . PMID 10466143. 
  12. ^ 《心理学与生活》(Psychology and life),Richard Gerrig / Philip Zimbardo,ISBN 9787115111302,人民邮电出版社,2003-10,P52

参考文献

编辑

书籍

编辑
  • EMRF/TRTF (Peter A. Rinck, ed.), Magnetic Resonance: A peer-reviewed, critical introduction (A free access online textbook页面存档备份,存于互联网档案馆))
  • Joseph P. Hornak, The basics of MRI (online页面存档备份,存于互联网档案馆))
  • Richard B. Buxton, Introduction to functional magnetic resonance imaging: Principles and techniques, Cambridge University Press, 2002, ISBN 0-521-58113-3
  • Roberto Cabeza and Alan Kingstone, Editors, Handbook of Functional Neuroimaging of Cognition, Second Edition, MIT Press, 2006, ISBN 0-262-03344-5
  • Huettel, S. A.; Song, A. W.; McCarthy, G., Functional Magnetic Resonance Imaging Second Edition, 2009, Massachusetts: Sinauer, ISBN 978-0-87893-286-3

延伸阅读

编辑

参见

编辑

外部链接

编辑