加速寿命测试
加速寿命测试(Accelerated life testing)是指为了在短时间内发现潜在失效模式或是故障,在非正常的条件(例如应力、应变、温度、电压、振动率、压强等)进行的测试[1][2]。工程师分析产品在这些测试下的结果,可以预测产品的寿命以及多久需要进行一次保养[3][4]
针对聚合物的测试,可以提升温度来缩短测试需要的时间。聚合物的许多机械特性(例如潜变、应力关系以及拉伸特性)和时间和温度之间的关系满足阿瑞尼斯方程式。在高温下以较短的时间进行测试后,将以此资料外推,预测聚合物在室温下的特性,避免在室温下进行长时间(也较昂贵)的测试。
目的
编辑加速寿命测试主要目的是缩短寿命测试的时间,常用在以下的情形:
- 低失效率:在正常条件下,就算用大量的样品,以很长的时间进行测试,可能只有少数样品失效,甚至没有失效。
- 高寿命:产品的寿命比正常条件下可以进行的测试时间会长很多。.
- 产品的失效主要是在较长时间之后才出现[5]。
例如,一般条件下要测试几年的电路可靠度测试,会需要在相当短的时间内完成。若测试是要评估电路多久要进行更换,那也适用于低失效的情形。若电路的失效是因为在正常使用下渐进的出现,而不是极端条件使用下出现(例如条件的突然变化),那也符合高寿命的条件。若产品失效的主因是因为突然的变化,比较适合用高加速寿命测试(HALT)来测试。
规划测试
编辑测试的规划包括考虑哪些因素会影响测试目标,测试目标的哪些行为是已知的,希望从测试中获得什么资讯。
测试条件
编辑所有影响测试目标的因素都需考虑进来,而且需要在各因素的不同层次上进行测试。应力水准越高,越会加速测试,但不能高到会改变失效原因或是改变其他可以量测到的反应。例如,让电路加热到元件材料的熔点会改变电路失效的方式。增加测试次数或是每次测试时的测试目标数量,可以增加在运作条件下预估测试目标行为的准确度。
选择模型
编辑模型是可以准确叙述测试目标的性能以及应力程度关系的方程式。这模型可以称为是加速模型(acceleration model),其中的常数称为加速因子(acceleration factors)[6]。加速模型会和测试的材料种类或是元件种类有关。在高温失效常用的加速模型是阿伦尼乌斯方程,温度和湿度的失效是使用艾林方程,温度循环则会用Blattau模型。
有时事先已知道要使用什么模型,只需识别模型中的参数,此情形下,仍要确保使用的模型有经过良好的验证。在一定范围的应力因子下,要让加速模型的外插法结果,和观察到的结果之间一致[7]。
若无法事先知道适合的模型,或是有数个可用的模型可以选择,测试时也需要依测试的内容及结果来评估哪一个模型最适合。有时二个模型在高应力的情形下结果相近,但在低应力时却有数个量级的差异[8]。此问题可以用更大范围的应力来处理,不过不能造成失效原因的变化。有一种可以在实验前进行,用来让这种差异最小化的作法是从测试估计期望获得的资料,找到一个符合资料的模型,并且判断若一切都如同预期,是否可以得到可靠的结果[9]。
加速因子
编辑加速因子对加速寿命测试结果的影响,需要找到测试物响应(如寿命、腐蚀、效率)以及加速因子随时间变化程度之间的关系。
因子对时间的影响和量测的物理量相当有关。例如,量测寿命的试验,只会看测试物的平均无故障时间(mean time to failure),也有可能会设法将资料拟合到某个概率分布。这一般会称为寿命分布,是产品某段时间内失效的几率密度函数[10]。有许多这类的分布,例如指数分布、韦伯分布、对数常态分布及伽玛分布[11]。其中的参数和待测物以及其测试的应力因子有关。
考虑一个简化的例子,一个待测物的寿命分布符合常态分布。在不同应力水准下测试,会得到不同的常态分布参数,也就是平均值和标准差。接着可以用已知的模型来找出应力因子和分布参数(平均值和标准差)之间的关系。接着可以用这个关系来估算在一般运作条件下的寿命。
相闗条目
编辑参考资料
编辑- ^ Nelson, W. Accelerated Life Testing - Step-Stress Models and Data Analyses. IEEE Transactions on Reliability. 1980, (2): 103. doi:10.1109/TR.1980.5220742.
- ^ Spencer, F. W. Statistical Methods in Accelerated Life Testing. Technometrics. 1991, 33 (3): 360–362. doi:10.1080/00401706.1991.10484846.
- ^ Donahoe, D.; Zhao, K.; Murray, S.; Ray, R. M. Accelerated Life Testing. Encyclopedia of Quantitative Risk Analysis and Assessment. 2008. ISBN 9780470035498. doi:10.1002/9780470061596.risk0452.
- ^ Elsayed, E. A. Accelerated Life Testing. Handbook of Reliability Engineering. 2003: 415–428. ISBN 978-1-85233-453-6. doi:10.1007/1-85233-841-5_22.
- ^ Test Plan Development: How To Do It, G. Sharon, November 19, 2015, https://www.dfrsolutions.com/resources/test-plan-development-how-to-do-it (页面存档备份,存于互联网档案馆)
- ^ Temperature and Humidity Acceleration Factors on MLV Lifetime, G. Caswell, https://www.dfrsolutions.com/hubfs/Resources/services/Temperature-and-Humidity-Acceleration-Factors-on-MLV-Lifetime.pdf?t=1514473946162 (页面存档备份,存于互联网档案馆)
- ^ Herrmann, W.; Bogdanski, N. Outdoor weathering of PV modules #x2014; Effects of various climates and comparison with accelerated laboratory testing. 2011 37th IEEE Photovoltaic Specialists Conference (PVSC). 2011-06-01: 002305–002311. ISBN 978-1-4244-9965-6. doi:10.1109/PVSC.2011.6186415.
- ^ Sorensen, Rob. Accelerated Life Testing (PDF). Sandia National Laboratories. May 28, 2010 [October 20, 2015]. (原始内容存档 (PDF)于2017-01-25).
- ^ 8.3.1.4. Accelerated life tests. www.itl.nist.gov. [2015-10-20]. (原始内容存档于2018-03-07).
- ^ Srivastava, P.W.; Shukla, R. A Log-Logistic Step-Stress Model. IEEE Transactions on Reliability. 2008-09-01, 57 (3): 431–434. ISSN 0018-9529. doi:10.1109/TR.2008.928182.[失效链接]
- ^ 8.1.6. What are the basic lifetime distribution models used for non-repairable populations?. www.itl.nist.gov. [2015-10-20]. (原始内容存档于2023-10-27).