基因转应(Transvection)是两同源染色体互相配对后,一个染色体上某基因的调控序列(如强化子)促进或抑制另一染色体上该基因表现的现象,最早于1950年代由美国遗传学家爱德华·路易斯黑腹果蝇基因组双胸复合群英语Bithorax complexUBX英语Ultrabithorax基因发现[1],随后果蝇的许多其他基因也被发现有此现象[2][3][4][5][6],且后续研究在老鼠、人类、植物、真菌、线虫与昆虫中均发现了基因转应,显示其可能为广泛存在于真核生物的基因表现调控英语Regulation of gene expression机制[7][8][9]

基因转应一般为同源染色体彼此配对后,一个染色体的强化子等调控序列影响另一染色体基因的表现,染色体倒位可能因影响同源染色体配对而降低基因转应效率[10]。基因转应也能发生在非同源染色体之间,只要两者具有一小段同源序列而能互相配对即可[9],另外曾有研究发现果蝇Abd-B基因不需染色体配对即可发生基因转应[11]绝缘子可能有助于维持染色体配对的结构而可促进基因转应[9][12]性染色体上的基因转应可能造成雌雄个体某基因表现的不同,如有研究显示果蝇Drosophila biarmipes瑞典语Drosophila biarmipes一影响翅斑的基因仅在雄性表现,原因是雌性(XX)个体中此位点有基因转应抑制了该基因表现,雄性(XY)则因仅有一个X染色体而不发生基因转应,故能正常表现该基因[13]

参考文献

编辑
  1. ^ Lewis EB. The theory and application of a new method of detecting chromosomal rearrangements in Drosophila melanogaster. The American Naturalist. 1954, 88 (841): 225–239. doi:10.1086/281833. 
  2. ^ Gelbart WM, Wu CT. Interactions of zeste mutations with loci exhibiting transvection effects in Drosophila melanogaster. Genetics. Oct 1982, 102 (2): 179–89. PMC 1201932 . PMID 6818101. 
  3. ^ Duncan IW. Transvection effects in Drosophila. Annual Review of Genetics. 2002, 36: 521–56. PMID 12429702. doi:10.1146/annurev.genet.36.060402.100441. 
  4. ^ Kennison JA, Southworth JW. Transvection in Drosophila. Adv. Genet. Advances in Genetics. 2002, 46: 399–420. ISBN 978-0-12-017646-5. PMID 11931232. doi:10.1016/S0065-2660(02)46014-2. 
  5. ^ Pirrotta V. Transvection and chromosomal trans-interaction effects. Biochim. Biophys. Acta. July 1999, 1424 (1): M1–8. PMID 10456029. doi:10.1016/S0304-419X(99)00019-0. 
  6. ^ McKee BD. Homologous pairing and chromosome dynamics in meiosis and mitosis. Biochim. Biophys. Acta. March 2004, 1677 (1–3): 165–80. PMID 15020057. doi:10.1016/j.bbaexp.2003.11.017. 
  7. ^ Sandhu KS, Shi C, Sjölinder M, Zhao Z, Göndör A, Liu L, Tiwari VK, Guibert S, Emilsson L, Imreh MP, Ohlsson R. Nonallelic transvection of multiple imprinted loci is organized by the H19 imprinting control region during germline development. Genes & Development. 2009-11-15, 23 (22): 2598–603. PMC 2779760 . PMID 19933149. doi:10.1101/gad.552109. 
  8. ^ Rassoulzadegan M, Magliano M, Cuzin F. Transvection effects involving DNA methylation during meiosis in the mouse. EMBO J. Feb 1, 2002, 21 (3): 440–50. PMC 125843 . PMID 11823436. doi:10.1093/emboj/21.3.440. 
  9. ^ 9.0 9.1 9.2 Tsai A, Singer RH, Crocker J. Transvection Goes Live-Visualizing Enhancer-Promoter Communication between Chromosomes.. Mol Cell. 2018, 70 (2): 195–196. PMID 29677489. doi:10.1016/j.molcel.2018.04.004. 
  10. ^ Lewis, E. B. The Theory and Application of a New Method of Detecting Chromosomal Rearrangements in Drosophila melanogaster. The American Naturalist. 1954, 88 (841): 225–239. ISSN 0003-0147. doi:10.1086/281833. 
  11. ^ R. Hopmann, D. Duncan, and I. Duncan. Transvection in the Iab-5,6,7 Region of the Bithorax Complex of Drosophila: Homology Independent Interactions in Trans. Genetics. 1995, 139 (2): 815–833. 
  12. ^ Lim B, Heist T, Levine M, Fukaya T. Visualization of Transvection in Living Drosophila Embryos.. Mol Cell. 2018, 70 (2): 287–296.e6. PMC 6092965 . PMID 29606591. doi:10.1016/j.molcel.2018.02.029. 
  13. ^ Galouzis CC, Prud'homme B. Transvection regulates the sex-biased expression of a fly X-linked gene.. Science. 2021, 371 (6527): 396–400. PMID 33479152. doi:10.1126/science.abc2745.