晶体管

泛指一切以半导体材料为基础的单一元件

晶体管(英语:transistor),早期音译穿细丝体,是一种类似阀门固体半导体器件,可以用于放大开关、稳压、信号调制和许多其他功能。在1947年,由约翰·巴丁沃尔特·布拉顿威廉·肖克利所发明。当时巴丁、布拉顿主要发明半导体三极管;肖克利则是发明PN二极管,他们因为半导体及晶体管效应的研究获得1956年诺贝尔物理奖[1]

几个不同大小的晶体管,由上到下的包装分别是TO-3、TO-126、TO-92、SOT-23

晶体管由半导体材料组成,至少有三个对外端点称之为极。以双极性接面晶体管为例,有基极(B)、集电极(C)、发射极(E),其中基极(B)是控制极,另外两个端点之间的伏安特性关系是受到控制极的非线性电阻关系。晶体管受控极输入的电流或电压,改变输出端的阻抗,从而控制通过输出端的电流,因此晶体管可以作为电流开关,而因为晶体管输出信号的功率可以大于输入信号的功率,因此晶体管可以作为电子放大器。

历史

编辑
 
第一个晶体管的复制品.

运用及分类

编辑
 
NPN型晶体管示意图

晶体管主要分为两大类:双极性晶体管(BJT)和场效应晶体管(FET)

晶体管一般都有三个极,其中一极兼任输入及输出端子,(B)基极不能做输出,(C)集电极不能做输入之外,其余两个极组成输入及输出对。 晶体管之所以有如此多用途在于其信号放大能力,当微细信号加于其中的一对极时便能控制在另一对极较大的信号,这特性叫增益

当晶体管于线性工作时,输出的信号与输入的讯息成比例,这时晶体管就成了一放大器。这是在模拟电路中的常用方式,例如电子放大器、音频放大器、射频放大器、稳压电路

当晶体管的输出不是完全关闭就是完全导通时,这时晶体管便是被用作开关使用。这种方式主要用于数字电路,例如数字电路包括逻辑门随机存取记忆体(RAM)和微处理器。另外在开关电源中,晶体管也是以这种方式工作。

而以何种形式工作,主要取决于晶体管的特性及外部电路的设计。

双极性晶体管的三个极,发射极(Emitter)、基极(Base)和集电极(Collector)[2]:31; 射极到基极的微小电流,会使得发射极到集电极之间的阻抗改变,从而改变流经的电流[2]:31

场效应晶体管的三个极,源极(Source)、闸(栅)极(Gate)和漏极(Drain)[2]:41。 在栅极与源极之间施加电压能够改变源极与漏极之间的阻抗,从而控制源极和漏极之间的电流。

晶体管因为有三种极性,所以也有三种的使用方式,分别是发射极接地(又称共射放大、CE组态)、基极接地(又称共基放大、CB组态)和集电极接地(又称共集放大、CC组态、发射极随隅器)[2]:37-39

晶体管在应用上有许多要注意的最大额定值,例如最大电压、最大电流、最大功率。若在超额的状态下使用,会破坏晶体管内部的结构。每种型号的晶体管还有像是直流放大率hFE、NF噪讯比等特性,可以借由晶体管规格表英语Datasheet得知。

重要性

编辑
 
阿威罗大学葡式碎石路上的晶体管符号

晶体管被认为是现代历史中最伟大的发明之一,可能是二十世纪最重要的发明[3],它让收音机计算器电脑、以及相关电子产品变得更小、更便宜。

在重要性方面可以与印刷术汽车电话等发明相提并论。晶体管是所有现代电器的关键主动(active)器件。晶体管在当今社会如此重要,主要是因为晶体管可以使用高度自动化的过程进行大规模生产的能力,因而可以不可思议地达到极低的单位成本。1947年贝尔实验室发明晶体管已被列在IEEE里程碑列表[4]

虽然数以百万计的单体晶体管还在使用[5],绝大多数的晶体管是和二极管电阻器电容器一起被装配在微芯片(芯片)上制造完整的电路。可能是模拟的、数字的,或是混合的芯片上。设计和开发复杂芯片的成本是相当高的,但是若分摊到百万个生产单位上,对每个芯片价格的影响就不大。一个逻辑门包含20个晶体管,而2012年一个高级的微处理器使用的晶体管数量达14亿个。

晶体管的成本,灵活性和可靠性使得其成为非机械任务的通用器件,例如数字计算。晶体管电路在控制电器和机械的应用上,也正在取代电机设备,因为它通常是更便宜而有效,使用电子控制时,可以使用标准集成电路并编写计算机程序来完成一个机械控制同样的任务。

因为晶体管和后来的电子计算机的低成本,开始了数码化信息的浪潮。由于计算机提供快速的查找、分类和处理数字信息的能力,在信息数码化方面投入了越来越多的精力。今天的许多媒体是通过电子形式发布的,最终通过计算机转化和呈现为模拟形式。受到数码化革命影响的领域包括电视广播报纸

和真空管的比较

编辑

在晶体管发展之前,真空管是电子设备中主要的功率器件。

优点

编辑

晶体管因为有以下的优点,因此可以在大多数应用中代替真空管:

  • 没有因加热阴极而产生的能量耗损,应用真空管时产生的橙光是因为加热造成,有点类似传统的灯泡。
  • 体积小、重量低,因此有助于电子设备的小型化。
  • 工作电压低,只要用电池就可以供应。
  • 在供电后即可使用,不需加热阴极需要的预热期。
  • 可透过半导体技术大量的生产。
  • 放大倍数大[6]

限制

编辑

相较于真空管,晶体管也有以下的限制:

  • 硅晶体管会老化及失效[7]
  • 高功率、高频率的应用中(例如电视广播),因真空管中的真空有助提升电子迁移率,效果会比晶体管要好。
  • 固体电子器件在应用时比较容易出现静电放电现象

类型

编辑
  PNP   P-沟道
  NPN   N-沟道
BJT JFET
BJT及JFET符号
        P-沟道
        N-沟道
JFET MOSFET enh MOSFET dep
JFET 及 MOSFET符号

晶体管可以依以下的方式分类:

现在也已发明许多新类型的晶体管。已有在低温下操作的单电子晶体管(single electron transistor SET)[9],以及单原子晶体管(single atom transistor SAT) [10],其中,原子是个别地植入。

双极性晶体管(BJT)

编辑

双极性晶体管同时利用半导体中的多数载流子及少数载流子导通,因此得名。双极性晶体管是第一个量产的晶体管,是由二种不同接面的二极管组成,其结构可分为二层N型半导体中间夹一层P型半导体的NPN晶体管,以及二层P型半导体中间夹一层N型半导体的PNP晶体管[2]:32。因此会有二个PN结,分别是基极-发射极接面及基极-集电极接面,中间隔着一层的半导体,即为基极。

双极性晶体管和场效应晶体管不同,双极性晶体管是低输入阻抗的器件。当基集电极电压(Vbe)提高时,集电极发射极电流(Ice)会依肖克基模型及艾伯斯-莫尔模型,以指数形式增加。因此双极性晶体管的跨导比FET要高。

双极性晶体管也可以设计为受到光照射时导通,因为基极吸收光子会产生光电流,其效应类似基极电流,集电极电流一般是光电流的β倍,这类的晶体管一般会在封装上有一透明窗,称为光晶体管

场效应晶体管(FET)

编辑
 
电脑仿真展现场效应晶体管的开通。左图为Id-Vg,右图为空间电子密度分布。随着电压增加,导电沟道形成(右图),电流增加(左图),场效应晶体管开通

场效应晶体管利用电子(N沟道FET)或是空穴(P沟道FET)导通电流。场效应晶体管都有栅极(gate)、漏极(drain)、源极(source)三个极,若不是结型场效应晶体管,还会有一极,称为体(body)。大部分的场效应晶体管中,体(body)会和源极相连。

在场效应晶体管中,源漏极电流会流过连接源极和漏极之间的沟道,导通程度会依栅极和源极之间的电压产生的电场而定,因此可以利用闸源极电压控制源漏极电流,做为一个简单的开关。当闸源极电压Vgs变大时,若Vgs小于临界电压VT时,源漏极电流Ids会指数方式增加,若Vgs大于临界电压VT时,源漏极电流和闸源极电压会有以下的平方关系 ,其中VT是临界电压[11]。不过在一些现代的器件中,观察不到上述的平方特性,像是65奈米及以下沟道长度的器件[12]

场效应晶体管可以分为两种:分别是结型场效应管(JFET)及绝缘栅极场效应管(IGFET),后者最常见的是金属氧化物半导体场效应管(MOSFET),其名称上反映了其原始以金属(栅极)、氧化物(绝缘层)及半导体组成的架构。结型场效应晶体管在源漏极之间形成了PN二极管。因此N沟道的JFET类似真空管的三极管,两者也都是运作在耗尽区,都有高输入阻抗,也都用输入电压来控制电流。

参见

编辑

参考资料

编辑
引用
  1. ^ The Nobel Prize in Physics 1956. Nobelprize.org. Nobel Media AB. [7 December 2014]. (原始内容存档于2014-12-18). 
  2. ^ 2.0 2.1 2.2 2.3 2.4 华伟; 周文定. 现代电力电子器件及其应用. 清华大学出版社有限公司. 2002 [2014-05-19]. ISBN 978-7-81082-032-5. (原始内容存档于2014-07-07). 
  3. ^ Robert W. Price. Roadmap to Entrepreneurial Success. AMACOM Div American Mgmt Assn. 2004: 42. ISBN 978-0-8144-7190-6. [失效链接]
  4. ^ Milestones:Invention of the First Transistor at Bell Telephone Laboratories, Inc., 1947. IEEE Global History Network. IEEE. [3 August 2011]. (原始内容存档于2014-11-21). 
  5. ^ FETs/MOSFETs: Smaller apps push up surface-mount supply 互联网档案馆存档,存档日期2008-12-06.
  6. ^ 科學角度看音響5:真空管、電晶體實作差異性,電壓、電流、電阻關係式. [2015-09-19]. (原始内容存档于2015-06-07). 
  7. ^ John Keane and Chris H. Kim, "Transistor Aging,"页面存档备份,存于互联网档案馆IEEE Spectrum (web feature), April 25, 2011.
  8. ^ Transistor Example. www.bcae1.com. [2021-12-09]. (原始内容存档于2008-02-08). 
  9. ^ Prati, Enrico; De Michielis, Marco; Belli, Matteo; Cocco, Simone; Fanciulli, Marco; Kotekar-Patil, Dharmraj; Ruoff, Matthias; Kern, Dieter P; Wharam, David A. Few electron limit of n-type metal oxide semiconductor single electron transistors. Nanotechnology. 2012-06-01, 23 (21): 215204. Bibcode:2012Nanot..23u5204P. ISSN 0957-4484. PMID 22552118. arXiv:1203.4811 . doi:10.1088/0957-4484/23/21/215204. 
  10. ^ Prati, Enrico; Hori, Masahiro; Guagliardo, Filippo; Ferrari, Giorgio; Shinada, Takahiro. Anderson–Mott transition in arrays of a few dopant atoms in a silicon transistor. Nature Nanotechnology. 2012-07, 7 (7): 443–447 [2021-12-09]. ISSN 1748-3387. doi:10.1038/nnano.2012.94. (原始内容存档于2021-12-09) (英语). 
  11. ^ Horowitz, Paul; Winfield Hill. The Art of Electronics 2nd. Cambridge University Press. 1989: 115. ISBN 0-521-37095-7. 
  12. ^ Sansen, Willy. Analog design essentials. Dordrecht: Spinger. 2008 [2021-12-09]. ISBN 978-0-387-25746-4. OCLC 890594995. (原始内容存档于2009-04-22) (英语). 
书目

外部链接

编辑