正电子
正电子(又称阳电子、反电子、正子)是电子的反粒子,即电子的对应反物质。它带有+1单位电荷,+1.6×10-19C,自旋为1/2,质量与电子相同,皆为9.10×10-31kg。
组成 | 基本粒子 |
---|---|
系 | 费米子 |
代 | 第一代 |
基本相互作用 | 重力、电磁、弱 |
符号 | β+ , e+ |
反粒子 | 电子 |
理论 | 保罗·狄拉克(1928年) |
发现 | 卡尔·戴维·安德森(1932年) |
质量 | 38291(40)×10−31 kg 9.109[1] 7990946(22)×10−4 5.485u[1] |
电荷 | +1 e 176565(35)×10−19 C 1.602[1] |
自旋 | 1⁄2 |
正电子与电子碰撞时会产生湮灭现象,这一过程遵守电荷守恒、能量守恒、动量守恒和角动量守恒。在高能情况下,湮灭会生成其他基本粒子。在低能情况下,正负电子湮灭主要生成两个或三个光子(有时也会生成更多光子)。另外,电子和正电子在湮灭之前有时会形成亚稳定的束缚态,即电子偶素。根据电子和正电子的不同自旋状态,电子偶素分为单态(1S0,总自旋为0)和三重态(3S1,总自旋为1)。在真空中,单态电子偶素的半衰期为125ps。三重态电子偶素的半衰期为142ns。
当能量超过1.02百万电子伏特的光子经过原子核附近时(成对产生),或者在放射性元素的正β衰变中(通过弱相互作用),都有可能产生正电子。
1930年英国物理学家保罗·狄拉克从理论上预言了正电子的存在,1932年美国物理学家卡尔·戴维·安德森在宇宙射线中发现了正电子。
历史
编辑理论
编辑保罗·狄拉克于1928年发表了一份论文[2],当中提出电子能够拥有正电荷及负电荷。在这份论文中,狄拉克首次引进了狄拉克方程,这条方程统一了量子力学、狭义相对论及电子自旋,而自旋当时还是一个很新的概念,用于解释塞曼效应。论文中狄拉克并没有明确地预测新粒子的存在,但他允许电子可以用正能量或负能量作解。正能量解成功解释了实验结果,但负能量解却令狄拉克相当困惑,因为在他的数学模型中负能量解跟正能量解一样有效。在量子力学中是不能够无视负能量解的,这点就跟经典力学很不一样;双重解意味着电子有可能会在正负能量态间自发跳跃。然而,实验并没有观测到这样的跃迁。狄拉克把这个理论与观测间的冲突称为“未解决的难题”。
狄拉克于1929年十二月撰写了一份后续论文,尝试解释相对论性电子那无可避免的负能量解[3]。他的论点是“……具有负能量的电子在外加(电磁)场中移动就像它携带了正电荷”。他继续论述说所有空间都可被视为充满负能量态的“海”,因此这样就阻止了电子在正能量态(负电荷)与负能量态(正电荷)间的跃迁。论文同时探讨了质子是这种海中的岛的可能性,及这种岛其实是负电荷电子的可能性。狄拉克承认,质子与电子的巨大质量差是一个难题,但同时表示将来的理论“有希望”解决这个问题。
对于狄拉克使用质子作为电子的负能量解,罗伯特·奥本海默表示强烈反对。他断言如果这是真的,那么氢原子就会瞬间自爆[4]。狄拉克被奥本海默的论点说服,于是在1931年发表的一篇论文中预测存在一种未被发现的粒子“反电子”,其质量与电子一样,并且与电子接触时会互相湮灭[5]。
理查德·费曼及在他之前的厄恩斯特·斯蒂克尔堡,提出了一种对狄拉克方程负能量解的诠释,就是正电子是逆时间而行的电子[6]。逆时间而行的电子,其电荷为正电荷。约翰·惠勒援引这个概念,来解释所有电子都共有的性质,同时指出在有自相互作用的复世界线上,“它们都是一样的电子”[7]。后来,南部阳一郎将这样的一套理论,应用于所有物质-反物质对的创生与湮灭,还说明了“平常所见成对的最终创生与湮灭,并不是创生与湮灭,而是移动中的粒子改变方向而已,从过去到将来,又或是从将来到过去”[8]。现时物理学家已经接受了逆时间观点,与其他绘景等价,[来源请求]但这个诠释却没有宏观的“因果”,因为微观物理描述并没有因果。
实验上的迹象与发现
编辑德米特里·斯科别利岑(Dmitri Skobeltsyn)最早于1929年观测到正电子[9][10]。在尝试用威尔逊云室[11]来侦测宇宙射线中伽马辐射的时候,斯科别利岑探测到一种行动像电子的粒子,但它在磁场中的弯曲方向与电子相反[10]。
同样地,加州理工学院的一名研究生赵忠尧在1929年也注意到类似的实验结果,显示有一种性质像电子的粒子,但其电荷为正,不过由于实验结果并非决定性,所以赵忠尧并没有继续追查这个现象[12]。
卡尔·安德森于1932年8月2日发现正电子[13],亦因此于1936年获颁诺贝尔物理学奖[14]。“正电子”(positron)一词是由安德森所创的。正电子是第一种被发现的反物质,因此当时成了反物质存在的证据。在发现时,安德森让宇宙射线通过云室及铅片。仪器被磁铁包围,而这些磁铁使不同电荷的粒子向不同的方向弯曲。每一粒通过照相底片的正电子,都会有一条离子轨迹,其曲率对应电子的质荷比,但轨迹方向与电子相反,意味着它的电荷也与电子相反。
后来安德森在忆述往事时写道,假若之前赵忠尧的研究有后续的话,那么正电子在那个时候就会被发现了[12]。在安德森公布发现正电子的时候,巴黎的弗雷德里克·约里奥-居里与伊雷娜·约里奥-居里夫妇已经持有有正电子轨迹的老照片,不过他们当时认为那轨是属于质子的,因此不予理会。
生产
编辑新的研究大大地增加了正电子的生产量。劳伦斯利福摩尔国家实验室的物理学家团队,用特高亮度的短距离镭射轰击一片1毫米厚的金箔,成功生产出1000亿个正电子[15][16]。
应用
编辑某些粒子加速器实验需要使正电子与电子在相对论性速度下对撞。高撞击能量与这些物质─反物质湮灭,能生成一整束各种各样的亚原子粒子。物理学家就是通过研究这些碰撞,来测试理论预测及寻找新的粒子。
放射性核素(示踪物)所发射的正电子与生物体内电子湮灭所产生的伽马射线,可用正电子发射计算机断层扫描(PET)来探测。PET扫描器能做出详细的三维图像,显示人体的新陈代谢[17]。
材料研究中通常采用正电子湮没谱学(Positron Annihilation Spectroscopy, PAS)技术,用于探测固体材料中的空位、位错等微观缺陷。[18]
注释
编辑- ^ 分数版本的分母为小数版本的倒数(相对标准误差也是一样×10−10)。 4.2
参考资料
编辑- ^ 1.0 1.1 1.2 1.3 科技数据委员会(CODATA)的数值来源为:
- Mohr, P.J.; Taylor, B.N.; Newell, D.B. CODATA recommended values of the fundamental physical constants. Reviews of Modern Physics. 2006, 80 (2): 633–730. Bibcode:2008RvMP...80..633M. arXiv:0801.0028 . doi:10.1103/RevModPhys.80.633.
亦可从以下链接取得CODATA各种物理常量的值: - The NIST Reference on Constants, Units and Uncertainty. National Institute of Standards and Technology. [2013-10-23]. (原始内容存档于2013-10-14).
- Mohr, P.J.; Taylor, B.N.; Newell, D.B. CODATA recommended values of the fundamental physical constants. Reviews of Modern Physics. 2006, 80 (2): 633–730. Bibcode:2008RvMP...80..633M. arXiv:0801.0028 . doi:10.1103/RevModPhys.80.633.
- ^ P. A. M. Dirac. The quantum theory of the electron (PDF). [2013-07-05]. (原始内容存档 (PDF)于2014-09-12).
- ^ P. A. M. Dirac. A Theory of Electrons and Protons (PDF).
- ^ Frank Close. Antimatter. Oxford University Press. 2009: 46. ISBN 978-0-19-955016-6.
- ^ P. A. M. Dirac. Quantised Singularities in the Quantum Field. Proc. R. Soc. Lond. A. 1931, 133 (821): 2–3 [2013-07-05]. Bibcode:1931RSPSA.133...60D. doi:10.1098/rspa.1931.0130. (原始内容存档于2017-07-16).
- ^ Feynman, Richard. The Theory of Positrons. Physical Review. 1949, 76 (76): 749. Bibcode:1949PhRv...76..749F. doi:10.1103/PhysRev.76.749.
- ^ Feynman, Richard. The Development of the Space-Time View of Quantum Electrodynamics (演讲). Nobel Lecture. 1965-12-11 [2007-01-02]. (原始内容存档于2015-05-12).
- ^ Nambu, Yoichiro. The Use of the Proper Time in Quantum Electrodynamics I. Progress in Theoretical Physics. 1950, 5 (5): 82. Bibcode:1950PThPh...5...82N. doi:10.1143/PTP.5.82.
- ^ Frank Close. Antimatter. Oxford University Press. : 50–52. ISBN 978-0-19-955016-6.
- ^ 10.0 10.1 general chemistry. Taylor & Francis. 1943: 660 [15 June 2011]. GGKEY:0PYLHBL5D4L. (原始内容存档于2016-12-03).
- ^ Cowan, Eugene. The Picture That Was Not Reversed. Engineering & Science. 1982, 46 (2): 6–28.
- ^ 12.0 12.1 Jagdish Mehra, Helmut Rechenberg. The Historical Development of Quantum Theory, Volume 6: The Completion of. Quantum Mechanics 1926–1941.. Springer. 2000: 804. ISBN 978-0-387-95175-1.
- ^ Anderson, Carl D. The Positive Electron. Physical Review. 1933, 43 (6): 491–494. Bibcode:1933PhRv...43..491A. doi:10.1103/PhysRev.43.491.
- ^ The Nobel Prize in Physics 1936. [2010-01-21]. (原始内容存档于2008-09-16).
- ^ Bland, E. Laser technique produces bevy of antimatter. MSNBC. 1 December 2008 [2009-07-16]. (原始内容存档于2008-12-05).
The LLNL scientists created the positrons by shooting the lab's high-powered Titan laser onto a one-millimeter-thick piece of gold.
- ^ Laser creates billions of antimatter particles. Cosmos Online. (原始内容存档于2009-05-22).
- ^ Phelps, Michael E. PET: physics, instrumentation, and scanners. Springer. 2006: 2–3. ISBN 0-387-32302-3.
- ^ Siegel, R W. Positron Annihilation Spectroscopy. Annual Review of Materials Science. 1980, 10: 393. Bibcode:1980AnRMS..10..393S. doi:10.1146/annurev.ms.10.080180.002141.