Tanhc函数定义如下[1]
∫ 0 z tanh ( x ) x d x {\displaystyle \int _{0}^{z}\!{\frac {\tanh \left(x\right)}{x}}{dx}}
t a n h c ≈ ( 1 − 1 3 z 2 + 2 15 z 4 − 17 315 z 6 + 62 2835 z 8 − 1382 155925 z 10 + 21844 6081075 z 12 − 929569 638512875 z 14 + O ( z 16 ) ) {\displaystyle tanhc\approx (1-{\frac {1}{3}}{z}^{2}+{\frac {2}{15}}{z}^{4}-{\frac {17}{315}}{z}^{6}+{\frac {62}{2835}}{z}^{8}-{\frac {1382}{155925}}{z}^{10}+{\frac {21844}{6081075}}{z}^{12}-{\frac {929569}{638512875}}{z}^{14}+O\left({z}^{16}\right))}
∫ 0 z tanh ( x ) x d x = ( z − 1 9 z 3 + 2 75 z 5 − 17 2205 z 7 + 62 25515 z 9 − 1382 1715175 z 11 + O ( z 13 ) ) {\displaystyle \int _{0}^{z}\!{\frac {\tanh \left(x\right)}{x}}{dx}=(z-{\frac {1}{9}}{z}^{3}+{\frac {2}{75}}{z}^{5}-{\frac {17}{2205}}{z}^{7}+{\frac {62}{25515}}{z}^{9}-{\frac {1382}{1715175}}{z}^{11}+O\left({z}^{13}\right))}