泽尔尼克多项式
泽尔尼克多项式是一个以1953年获诺贝尔物理学奖荷兰物理学家弗里茨·泽尔尼克命名的正交多项式,分为奇、偶两类
奇多项式:
偶多项式
其中 为非负整数,
为方位角
为径向距离
如果 n-m为偶数则
如果n-m为奇数,则
泽尔尼克多项式的超几何函数表示
编辑泽尔尼克多项式也可以表示为超几何函数
Noll 序列
编辑Noll 用一个J数字表示 [n,m]:如下表
n,m | 0,0 | 1,1 | 1,−1 | 2,0 | 2,−2 | 2,2 | 3,−1 | 3,1 | 3,−3 | 3,3 |
---|---|---|---|---|---|---|---|---|---|---|
j | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
n,m | 4,0 | 4,2 | 4,−2 | 4,4 | 4,−4 | 5,1 | 5,−1 | 5,3 | 5,−3 | 5,5 |
j | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
泽尔尼克多项式
编辑由于
其中 因j而异,
必须先归一化
令
使得
归一化泽尔尼克多项式以Noll序列排列如下:
Noll index ( ) | Radial degree ( ) | Azimuthal degree ( ) | Classical name | |
---|---|---|---|---|
1 | 0 | 0 | Piston | |
2 | 1 | 1 | Tip (lateral position) (X-Tilt) | |
3 | 1 | −1 | Tilt (lateral position) (Y-Tilt) | |
4 | 2 | 0 | Defocus (longitudinal position) | |
5 | 2 | −2 | Astigmatism | |
6 | 2 | 2 | Astigmatism | |
7 | 3 | −1 | Coma | |
8 | 3 | 1 | Coma | |
9 | 3 | −3 | Trefoil | |
10 | 3 | 3 | Trefoil | |
11 | 4 | 0 | Third-order spherical | |
12 | 4 | 2 | — | |
13 | 4 | −2 | — | |
14 | 4 | 4 | — | |
15 | 4 | −4 | — |
正交性
编辑- 径向正交性
- 角度正交性
其中 称为Neumann因子,其数值为 2 如果满足 ,数值为 1,如果 .
- 径向与角度正交性
其中 为 雅可比矩阵
与 都是偶数.
参考文献
编辑- 埃里克·韦斯坦因. Zernike Polynomial. MathWorld.
- Callahan, P. G.; De Graef, M. Precipitate shape fitting and reconstruction by means of 3D Zernike functions. Model. Simul. Mat. Sci. Engin. 2012, 20: 015003. Bibcode:2012MSMSE..20a5003C. doi:10.1088/0965-0393/20/1/015003.
- Campbell, C. E. Matrix method to find a new set of Zernike coefficients form an original set when the aperture radius is changed. J. Opt. Soc. Am. A. 2003, 20 (2): 209. Bibcode:2003JOSAA..20..209C. doi:10.1364/JOSAA.20.000209.
- Cerjan, C. The Zernike-Bessel representation and its application to Hankel transforms. J. Opt. Soc. Am. A. 2007, 24 (6): 1609. Bibcode:2007JOSAA..24.1609C. doi:10.1364/JOSAA.24.001609.
- Comastri, S. A.; Perez, L. I.; Perez, G. D.; Martin, G.; Bastida Cerjan, K. Zernike expansion coefficients: rescaling and decentering for different pupils and evaluation of corneal aberrations. J. Opt. Soc. Am. A. 2007, 9 (3): 209. Bibcode:2007JOptA...9..209C. doi:10.1088/1464-4258/9/3/001.
- Conforti, G. Zernike aberration coefficients from Seidel and higher-order power-series coefficients. Opt. Lett. 1983, 8 (7): 407–408. Bibcode:1983OptL....8..407C. doi:10.1364/OL.8.000407.
- Dai, G-m.; Mahajan, V. N. Zernike annular polynomials and atmospheric turbulence. J. Opt. Soc. Am. A. 2007, 24: 139 [2015-01-29]. Bibcode:2007JOSAA..24..139D. doi:10.1364/JOSAA.24.000139. (原始内容存档于2019-07-02).
- Dai, G-m. Scaling Zernike expansion coefficients to smaller pupil sizes: a simpler formula. J. Opt. Soc. Am. A. 2006, 23 (3): 539 [2015-01-29]. Bibcode:2006JOSAA..23..539D. doi:10.1364/JOSAA.23.000539. (原始内容存档于2019-07-02).
- Díaz, J. A.; Fernández-Dorado, J.; Pizarro, C.; Arasa, J. Zernike Coefficients for Concentric, Circular, Scaled Pupils: An Equivalent Expression. Journal of Modern Optics. 2009, 56 (1): 149–155. Bibcode:2009JMOp...56..149D. doi:10.1080/09500340802531224.
- Díaz, J. A.; Fernández-Dorado, J. Zernike Coefficients for Concentric, Circular, Scaled Pupils. [2015-01-29]. (原始内容存档于2020-03-18). from The Wolfram Demonstrations Project.
- Farokhi, Sajad; Shamsuddin, Siti Mariyam; Flusser, Jan; Sheikh, U.U; Khansari, Mohammad; Jafari-Khouzani, Kourosh. Rotation and noise invariant near-infrared face recognition by means of Zernike moments and spectral regression discriminant analysis. Journal of Electronic Imaging. 2013, 22 (1). Bibcode:2013JEI....22a3030F. doi:10.1117/1.JEI.22.1.013030.
- Gu, J.; Shu, H. Z.; Toumoulin, C.; Luo, L. M. A novel algorithm for fast computation of Zernike moments. Pattern Recogn. 2002, 35 (12): 2905–2911. doi:10.1016/S0031-3203(01)00194-7.
- Herrmann, J. Cross coupling and aliasing in modal wave-front estimation. J. Opt. Soc. Am. 1981, 71 (8): 989 [2015-01-29]. Bibcode:1981JOSA...71..989H. doi:10.1364/JOSA.71.000989. (原始内容存档于2019-07-02).
- Hu, P. H.; Stone, J.; Stanley, T. Application of Zernike polynomials to atmospheric propagation problems. J. Opt. Soc. Am. A. 1989, 6 (10): 1595. Bibcode:1989JOSAA...6.1595H. doi:10.1364/JOSAA.6.001595.
- Kintner, E. C. On the mathematical properties of the Zernike Polynomials. Opt. Acta. 1976, 23 (8): 679. Bibcode:1976AcOpt..23..679K. doi:10.1080/713819334.
- Lawrence, G. N.; Chow, W. W. Wave-front tomography by Zernike Polynomial decomposition. Opt. Lett. 1984, 9 (7): 267. Bibcode:1984OptL....9..267L. doi:10.1364/OL.9.000267.
- Liu, Haiguang; Morris, Richard J.; Hexemer, A.; Grandison, Scott; Zwart, Peter H. Computation of small-angle scattering profiles with three-dimensional Zernike polynomials. Acta Cryst. A. 2012, (A69): 278–285. doi:10.1107/S010876731104788X.
- Lundström, L.; Unsbo, P. Transformation of Zernike coefficients: scaled, translated and rotated wavefronts with circular and elliptical pupils. J. Opt. Soc. Am. A. 2007, 24 (3): 569. Bibcode:2007JOSAA..24..569L. doi:10.1364/JOSAA.24.000569.
- Mahajan, V. N. Zernike annular polynomials for imaging systems with annular pupils. J. Opt. Soc. Am. 1981, 71: 75. Bibcode:1981JOSA...71...75M. doi:10.1364/JOSA.71.000075.
- Mathar, R. J. Third Order Newton's Method for Zernike Polynomial Zeros. 2007. Bibcode:2007arXiv0705.1329M. arXiv:0705.1329 [math.NA]. cite arXiv模板填写了不支持的参数 (帮助)
- Mathar, R. J. Zernike Basis to Cartesian Transformations. Serbian Astronomical Journal. 2009, 179 (179): 107–120. Bibcode:2009SerAj.179..107M. arXiv:0809.2368 . doi:10.2298/SAJ0979107M.
- Prata Jr, A.; Rusch, W. V. T. Algorithm for computation of Zernike polynomials expansion coefficients. Appl. Opt. 1989, 28 (4): 749 [2015-01-29]. Bibcode:1989ApOpt..28..749P. doi:10.1364/AO.28.000749. (原始内容存档于2019-07-02).
- Schwiegerling, J. Scaling Zernike expansion coefficients to different pupil sizes. J. Opt. Soc. Am. A. 2002, 19 (10): 1937 [2015-01-29]. Bibcode:2002JOSAA..19.1937S. doi:10.1364/JOSAA.19.001937. (原始内容存档于2019-07-02).
- Sheppard, C. J. R.; Campbell, S.; Hirschhorn, M. D. Zernike expansion of separable functions in Cartesian coordinates. Appl. Opt. 2004, 43 (20): 3963 [2015-01-29]. Bibcode:2004ApOpt..43.3963S. doi:10.1364/AO.43.003963. (原始内容存档于2019-07-02).
- Shu, H.; Luo, L.; Han, G.; Coatrieux, J.-L. General method to derive the relationship between two sets of Zernike coefficients corresponding to different aperture sizes. J. Opt. Soc. Am. A. 2006, 23 (8): 1960 [2015-01-29]. Bibcode:2006JOSAA..23.1960S. doi:10.1364/JOSAA.23.001960. (原始内容存档于2019-07-02).
- Swantner, W.; Chow, W. W. Gram-Schmidt orthogonalization of Zernike polynomials for general aperture shapes. Appl. Opt. 1994, 33 (10): 1832 [2015-01-29]. Bibcode:1994ApOpt..33.1832S. doi:10.1364/AO.33.001832. (原始内容存档于2015-01-24).
- Tango, W. J. The circle polynomials of Zernike and their application in optics. Appl. Phys. A. 1977, 13 (4): 327. Bibcode:1977ApPhy..13..327T. doi:10.1007/BF00882606.
- Tyson, R. K. Conversion of Zernike aberration coefficients to Seidel and higher-order power series aberration coefficients. Opt. Lett. 1982, 7 (6): 262. Bibcode:1982OptL....7..262T. doi:10.1364/OL.7.000262.
- Wang, J. Y.; Silva, D. E. Wave-front interpretation with Zernike Polynomials. Appl. Opt. 1980, 19 (9): 1510. Bibcode:1980ApOpt..19.1510W. doi:10.1364/AO.19.001510.
- Barakat, R. Optimum balanced wave-front aberrations for radially symmetric amplitude distributions: Generalizations of Zernike polynomials. J. Opt. Soc. Am. 1980, 70 (6): 739. Bibcode:1980JOSA...70..739B. doi:10.1364/JOSA.70.000739.
- Bhatia, A. B.; Wolf, E. The Zernike circle polynomials occurring in diffraction theory. Proc. Phys. Soc. B. 1952, 65 (11): 909. Bibcode:1952PPSB...65..909B. doi:10.1088/0370-1301/65/11/112.
- ten Brummelaar, T. A. Modeling atmospheric wave aberrations and astronomical instrumentation using the polynomials of Zernike. Opt. Commun. 1996, 132 (3–4): 329. Bibcode:1996OptCo.132..329T. doi:10.1016/0030-4018(96)00407-5.
- Novotni, M.; Klein, R. 3D Zernike Descriptors for Content Based Shape Retrieval (PDF). Proceedings of the 8th ACM Symposium on Solid Modeling and Applications. [2015-01-29]. (原始内容存档 (PDF)于2007-07-29).
- Novotni, M.; Klein, R. Shape retrieval using 3D Zernike descriptors (PDF). Computer Aided Design. 2004, 36 (11): 1047–1062 [2015-01-29]. doi:10.1016/j.cad.2004.01.005. (原始内容存档 (PDF)于2007-07-29).
- Farokhi, Sajad; Shamsuddin, Siti Mariyam; Sheikh, U.U; Flusser, Jan. Near Infrared Face Recognition: A Comparison of Moment-Based Approaches (PDF) 291 (1). Springer: 129–135. 2014. doi:10.1007/978-981-4585-42-2_15.
|booktitle=
被忽略 (帮助) - Farokhi, Sajad; Shamsuddin, Siti Mariyam; Flusser, Jan; Sheikh, U.U; Khansari, Mohammad; Jafari-Khouzani, Kourosh. Near infrared face recognition by combining Zernike moments and undecimated discrete wavelet transform. Digital Signal Processing. 2014, 31 (1) [2015-01-29]. doi:10.1016/j.dsp.2014.04.008. (原始内容存档于2019-06-02).