多餘參數
統計學中,多餘參數(英語:nuisance parameter)是指與感興趣參數無關,但在分析那些感興趣參數時必須考慮的所有參數。例如,當常態分布的均值μ是首要關心的參數時,變異數σ2就是一個多餘參數。
多餘參數通常是變異數,但並不總是;例如,在含誤差變量模型中,未知的每個觀測的真實位置是多餘參數。一般來說,任何干擾另一個參數的分析的參數,都可認為是多餘參數。如果該參數成為研究物件,它就不再「多餘」,就像分布的變異數一樣。
對於已知隨機變量,在得到了所有未知隨機變量的聯合條件分布後(比如可利用貝氏定理),就可以利用邊際分布將多餘參數邊際化,以得到我們感興趣的那部分隨機變量的結果。
這是一篇與統計學相關的小作品。您可以透過編輯或修訂擴充其內容。 |