當a = b 時,曲面稱為旋轉拋物面 ,它可以由拋物線 繞著它的軸旋轉而成。它是拋物面反射器 的形狀,把光源放在焦點上,經鏡面反射後,會形成一束平行的光線。反過來也成立,一束平行的光線照向鏡面後,會聚集在焦點上。
橢圓拋物面的參數方程 為:
σ
→
(
u
,
v
)
=
(
u
,
v
,
u
2
a
2
+
v
2
b
2
)
{\displaystyle {\vec {\sigma }}(u,v)=\left(u,v,{u^{2} \over a^{2}}+{v^{2} \over b^{2}}\right)}
高斯曲率 為:
K
(
u
,
v
)
=
4
a
2
b
2
(
1
+
4
u
2
a
4
+
4
v
2
b
4
)
2
{\displaystyle K(u,v)={4 \over a^{2}b^{2}\left(1+{4u^{2} \over a^{4}}+{4v^{2} \over b^{4}}\right)^{2}}}
平均曲率 為:
H
(
u
,
v
)
=
a
2
+
b
2
+
4
u
2
a
2
+
4
v
2
b
2
a
2
b
2
(
1
+
4
u
2
a
4
+
4
v
2
b
4
)
3
2
{\displaystyle H(u,v)={a^{2}+b^{2}+{4u^{2} \over a^{2}}+{4v^{2} \over b^{2}} \over a^{2}b^{2}\left(1+{4u^{2} \over a^{4}}+{4v^{2} \over b^{4}}\right)^{\frac {3}{2}}}}
它們都是正數,在頂點處最大,越遠離頂點曲率越小,並趨近於零。
雙曲拋物面的參數方程為:
σ
→
(
u
,
v
)
=
(
u
,
v
,
u
2
a
2
−
v
2
b
2
)
{\displaystyle {\vec {\sigma }}(u,v)=\left(u,v,{u^{2} \over a^{2}}-{v^{2} \over b^{2}}\right)}
高斯曲率為:
K
(
u
,
v
)
=
−
4
a
2
b
2
(
1
+
4
u
2
a
4
+
4
v
2
b
4
)
2
{\displaystyle K(u,v)={-4 \over a^{2}b^{2}\left(1+{4u^{2} \over a^{4}}+{4v^{2} \over b^{4}}\right)^{2}}}
平均曲率 為:
H
(
u
,
v
)
=
−
a
2
+
b
2
−
4
u
2
a
2
+
4
v
2
b
2
a
2
b
2
(
1
+
4
u
2
a
4
+
4
v
2
b
4
)
3
2
.
{\displaystyle H(u,v)={-a^{2}+b^{2}-{4u^{2} \over a^{2}}+{4v^{2} \over b^{2}} \over a^{2}b^{2}\left(1+{4u^{2} \over a^{4}}+{4v^{2} \over b^{4}}\right)^{\frac {3}{2}}}.}
如果把雙曲拋物面
z
=
x
2
a
2
−
y
2
b
2
{\displaystyle z={x^{2} \over a^{2}}-{y^{2} \over b^{2}}}
順著+z 的方向旋轉π/4的角度,則方程為:
z
=
1
2
(
x
2
+
y
2
)
(
1
a
2
−
1
b
2
)
+
x
y
(
1
a
2
+
1
b
2
)
{\displaystyle z={1 \over 2}\left(x^{2}+y^{2}\right)\left({1 \over a^{2}}-{1 \over b^{2}}\right)+xy\left({1 \over a^{2}}+{1 \over b^{2}}\right)}
如果
a
=
b
{\displaystyle \ a=b}
,則簡化為:
z
=
2
a
2
x
y
{\displaystyle z={2 \over a^{2}}xy}
.
最後,設
a
=
2
{\displaystyle a={\sqrt {2}}}
,我們可以看到雙曲拋物面
z
=
x
2
−
y
2
2
{\displaystyle z={x^{2}-y^{2} \over 2}}
.
與以下的曲面是全等的:
z
=
x
y
{\displaystyle \ z=xy}
因此它可以視為乘法表 的幾何表示。
兩個
R
2
→
R
{\displaystyle \mathbb {R} ^{2}\rightarrow \mathbb {R} }
函數
z
1
(
x
,
y
)
=
x
2
−
y
2
2
{\displaystyle z_{1}(x,y)={x^{2}-y^{2} \over 2}}
和
z
2
(
x
,
y
)
=
x
y
{\displaystyle \ z_{2}(x,y)=xy}
是調和共軛 ,它們在一起形成解析函數
f
(
z
)
=
1
2
z
2
=
f
(
x
+
i
y
)
=
z
1
(
x
,
y
)
+
i
z
2
(
x
,
y
)
{\displaystyle f(z)={1 \over 2}z^{2}=f(x+iy)=z_{1}(x,y)+iz_{2}(x,y)}
它是
R
→
R
{\displaystyle \mathbb {R} \rightarrow \mathbb {R} }
函數
f
(
x
)
=
1
2
x
2
{\displaystyle \ f(x)={1 \over 2}x^{2}}
的解析延拓 。
Beyer, W. H. (Ed.). CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 133, 1987.
Gray, A. "The Paraboloid." §13.5 in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 307-308, 1997.
Harris, J. W. and Stocker, H. "Paraboloid of Revolution." §4.10.2 in Handbook of Mathematics and Computational Science. New York: Springer-Verlag, p. 112, 1998.
Hilbert, D. and Cohn-Vossen, S. Geometry and the Imagination. New York: Chelsea, pp. 10-11, 1999.
Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, 1999.