Tanc 函數 定義如下[1]
∫ 0 z tan ( x ) x d x = ( z + 1 9 z 3 + 2 75 z 5 + 17 2205 z 7 + 62 25515 z 9 + 1382 1715175 z 11 + 21844 79053975 z 13 + 929569 9577693125 z 15 + O ( z 17 ) ) {\displaystyle \int _{0}^{z}\!{\frac {\tan \left(x\right)}{x}}{dx}=(z+{\frac {1}{9}}{z}^{3}+{\frac {2}{75}}{z}^{5}+{\frac {17}{2205}}{z}^{7}+{\frac {62}{25515}}{z}^{9}+{\frac {1382}{1715175}}{z}^{11}+{\frac {21844}{79053975}}{z}^{13}+{\frac {929569}{9577693125}}{z}^{15}+O\left({z}^{17}\right))}