圖靈歸約
圖靈歸約是可计算性理论中的一種歸約,若問題A可圖靈歸約成問題B,是指若問題B的解答已經知道(Rogers 1967, Soare 1987),就可以解問題A,也可以解釋為若一個演算法可以用來處理問題B,就可以處理問題A。較正式的說法,可被圖靈歸約成問題B的問題是指若存在問題B的預言機,就可以求解的問題集合。圖靈歸約可以用在決定性問題及功能性問題。
相關條目
编辑參考資料
编辑- H. Rogers, 1967. Theory of recursive functions and effective computability. McGraw-Hill.
- R. Soare, 1987. Recursively enumerable sets and degrees, Springer.
外部連結
编辑这是一篇與科技相關的小作品。您可以通过编辑或修订扩充其内容。 |