實閉域
在數學中,實閉域或實封閉域是一類有序域,使得其中每個正元素皆可表為平方,且任何奇數次多項式都有根。以下將給出幾種等價的定義。
定義
编辑形式實域
编辑假設所論之域的特徵數皆為零。若在一個域 中, 無法寫成平方和(表法: ),則稱 是形式實的。
每個有序域都是形式實域;形式實的定義本身不涉及序結構,但藉由實閉包的存在性可證明每個形式實域皆帶序結構。
實封閉域
编辑一個實封閉域 若滿足下列等價條件,則稱之實封閉域:
- 上存在一個序結構,使得其中每個正元素皆可表為平方,且任何奇數次多項式都有根。
- 上存在一個序結構,使之滿足中間值定理。
- 對任意 ,或者 或者 ;且任何奇數次多項式都有根。
- 非代數封閉,而 代數封閉。
- 若 , 是形式實的,則 。
我們可以純以代數性質定義實封閉域,並由 得到唯一的序結構。
實閉包
编辑對任何形式實域 ,都存在代數擴張 ,使得 是實封閉的。我們稱 是 的一個實閉包。實閉包並不唯一。
若在 上固定一個序結構,並要求 的序結構與之相容;則此時實閉包 存在並唯一,且 。
例子
编辑模型論觀點
编辑實封閉域的研究首先由數學家展開,隨後引起了邏輯學家的興趣。採用形式語言 ,設 為實封閉域(帶序結構)的 -一階理論,塔斯基證明了 上有量詞消去;因此任兩個 的模型都是初等等價的。一方面,我們可運用 上的特有工具(微積分、拓撲等等)證明一般實封閉域上的一階句子;另一方面,則可透過適當的域擴張解決 上的問題,後一方向上最著名的成就是 Abraham Robinson 對希爾伯特第十七問題的證明。
如果改採形式語言 ,並取實封閉域的代數定義 ,此時則無法消去量詞(在 中考慮公式 )。
設 是實封閉域,換言之 ,根據 上的量詞消去, 上的可定義集只是有限多個線段與孤立點的聯集。此性質稱作O-極小性,它較量詞消去為弱,卻是研究 上可定義集的幾何構造之關鍵。
文獻
编辑- Chang, Chen Chung and Keisler, H. Jerome: Model Theory, North-Holland, 1989.
- H. Garth Dales and W. Hugh Woodin: Super-Real Fields, Clarendon Press, 1996.
- Computational Real Algebraic Geometry, Bhubaneswar Mishra, Handbook of Discrete and Computational Geometry, CRC Press, 1997 (Postscript 版本 (页面存档备份,存于互联网档案馆)); 亦見 2004 edition, p. 743, ISBN 1-58488-301-4
- Saugata Basu, Richard Pollack and Marie-Françoise Roy, Algorithms in real algebraic geometry, Springer, Algorithms and computation in mathematics, 2003, ISBN 3540330984 (在線版本)
- Bob F. Caviness, Jeremy R. Johnson, editors, Quantifier elimination and cylindrical algebraic decomposition, Springer, 1998, ISBN 3211827943