生长激素受体

生长激素受体(英语:Growth hormone receptor)是一种由人类基因GHR 编码的蛋白质[1],GHR的直系同源[2]广泛存在于各种哺乳动物中。

Growth hormone receptor
生长激素受体
PDB rendering based on 1a22.
有效结构
PDB 直系同源检索:PDBe, RCSB
标识
代号 GHR; GHBP
扩展标识 遗传学600946 鼠基因95708 同源基因134 ChEMBL: 1976 GeneCards: GHR Gene
RNA表达模式
更多表达数据
直系同源体
物种 人类 小鼠
Entrez 2690 14600
Ensembl ENSG00000112964 ENSMUSG00000055737
UniProt P10912 P16882
mRNA序列 NM_000163 NM_001048147
蛋白序列 NP_000154 NP_001041612
基因位置 Chr 5:
42.42 – 42.72 Mb
Chr 15:
3.32 – 3.58 Mb
PubMed查询 [1] [2]

此基因编码的蛋白是结合生长激素的跨膜受体。

相互作用

编辑

生长激素受体能与SGTA[3]PTPN11[4][5]JAK激酶2[6][7][8]SOCS1[9]CISH[9]发生交互作用

进化

编辑

GHR 基因曾作为动物核DNA英语nuclear DNA系统发育标记[2],对其10号外显子基因多态性的探究第一次阐释了啮齿目主要类群间的亲缘关系[10][11][12]。GHR也用于较低阶元的分类,在鼠总科[13][14]八齿鼠科[15]田鼠亚科[16]鼠亚科英语Murinae[17]白足鼠属[18]等啮齿动物,及熊型总科[19]猫科[20]肉食动物以及皮翼目[21]的分类上有重要作用。GHR的9号内含子也用于阐释鼬科[22]鬣狗科[23]系统发生

拮抗剂

编辑

参考文献

编辑
  1. ^ Entrez Gene: GHR growth hormone receptor. 
  2. ^ 2.0 2.1 OrthoMaM phylogenetic marker: GHR coding sequence. [2014-02-04]. (原始内容存档于2015-09-24). 
  3. ^ Schantl, Julia A; Roza Marcel, De Jong Ad P, Strous Ger J. Small glutamine-rich tetratricopeptide repeat-containing protein (SGT) interacts with the ubiquitin-dependent endocytosis (UbE) motif of the growth hormone receptor. Biochem. J. (England). August 2003, 373 (Pt 3): 855–63. ISSN 0264-6021. PMC 1223544 . PMID 12735788. doi:10.1042/BJ20021591. 
  4. ^ Stofega, M R; Herrington J, Billestrup N, Carter-Su C. Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B. Mol. Endocrinol. (UNITED STATES). September 2000, 14 (9): 1338–50. ISSN 0888-8809. PMID 10976913. doi:10.1210/me.14.9.1338. 
  5. ^ Moutoussamy, S; Renaudie F, Lago F, Kelly P A, Finidori J. Grb10 identified as a potential regulator of growth hormone (GH) signaling by cloning of GH receptor target proteins. J. Biol. Chem. (UNITED STATES). June 1998, 273 (26): 15906–12. ISSN 0021-9258. PMID 9632636. doi:10.1074/jbc.273.26.15906. 
  6. ^ Frank, S J; Yi W, Zhao Y, Goldsmith J F, Gilliland G, Jiang J, Sakai I, Kraft A S. Regions of the JAK2 tyrosine kinase required for coupling to the growth hormone receptor. J. Biol. Chem. (UNITED STATES). June 1995, 270 (24): 14776–85. ISSN 0021-9258. PMID 7540178. doi:10.1074/jbc.270.24.14776. 
  7. ^ VanderKuur, J A; Wang X, Zhang L, Campbell G S, Allevato G, Billestrup N, Norstedt G, Carter-Su C. Domains of the growth hormone receptor required for association and activation of JAK2 tyrosine kinase. J. Biol. Chem. (UNITED STATES). August 1994, 269 (34): 21709–17. ISSN 0021-9258. PMID 8063815. 
  8. ^ Hellgren, G; Jansson J O, Carlsson L M, Carlsson B. The growth hormone receptor associates with Jak1, Jak2 and Tyk2 in human liver. Growth Horm. IGF Res. (SCOTLAND). June 1999, 9 (3): 212–8. ISSN 1096-6374. PMID 10502458. doi:10.1054/ghir.1999.0111. 
  9. ^ 9.0 9.1 Ram, P A; Waxman D J. SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J. Biol. Chem. (UNITED STATES). December 1999, 274 (50): 35553–61. ISSN 0021-9258. PMID 10585430. doi:10.1074/jbc.274.50.35553. 
  10. ^ Adkins RM, Gelke EL, Rowe D, Honeycutt RL. Molecular phylogeny and divergence time estimates for major rodent groups: evidence from multiple genes.. Mol Biol Evol. 2001, 18 (5): 777–791. PMID 11319262. doi:10.1093/oxfordjournals.molbev.a003860. 
  11. ^ Adkins R. M., Walton A. H. & Honeycutt R. L. Higher-level systematics of rodents and divergence time estimates based on two congruent nuclear genes. Mol. Phylogenet. Evol. 2003, 26 (3): 409–420. PMID 12644400. doi:10.1016/S1055-7903(02)00304-4. 
  12. ^ Blanga-Kanfi S., Miranda H., Penn O., Pupko T., DeBry R. W. & Huchon D. Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades. BMC Evol. Biol. 2009, 9: 71 [2014-02-04]. PMC 2674048 . PMID 19341461. doi:10.1186/1471-2148-9-71. (原始内容存档于2015-09-23). 
  13. ^ Steppan S. J., Adkins R. M. & Anderson J. Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst. Biol. 2004, 53 (4): 533–553. PMID 15371245. doi:10.1080/10635150490468701. 
  14. ^ Rowe K. C., Reno M. L., Richmond D. M., Adkins R. M. & Steppan S. J. Pliocene colonization and adaptive radiations in Australia and New Guinea (Sahul): multilocus systematics of the old endemic rodents (Muroidea: Murinae). Mol. Phylogenet. Evol. 2008, 47 (1): 84–101. PMID 18313945. doi:10.1016/j.ympev.2008.01.001. 
  15. ^ Honeycutt R. L., Rowe D. L. & Gallardo M. H. Molecular systematics of the South American caviomorph rodents: relationships among species and genera in the family Octodontidae. Mol. Phylogenet. Evol. 2003, 26 (3): 476–489. PMID 12644405. doi:10.1016/S1055-7903(02)00368-8. 
  16. ^ Galewski T., Tilak M., Sanchez S., Chevret P., Paradis E. & Douzery E. J. P. The evolutionary radiation of Arvicolinae rodents (voles and lemmings): relative contribution of nuclear and mitochondrial DNA phylogenies. BMC Evol. Biol. 2006, 6: 80 [2014-02-04]. PMC 1618403 . PMID 17029633. doi:10.1186/1471-2148-6-80. (原始内容存档于2015-11-15). 
  17. ^ Lecompte E., Aplin K., Denys C., Catzeflis F., Chades M. & Chevret P. Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily. BMC Evol. Biol. 2008, 8: 199 [2014-02-04]. PMC 2490707 . PMID 18616808. doi:10.1186/1471-2148-8-199. (原始内容存档于2015-11-30). 
  18. ^ Miller J. R. & Engstrom M. D. The relationships of major lineages within peromyscine rodents: a molecular phylogenetic hypothesis and systematic reappraisal. J. Mammal. 2008, 89 (5): 1279–1295. doi:10.1644/07-MAMM-A-195.1. 
  19. ^ Fulton T. L. & Strobeck C. Molecular phylogeny of the Arctoidea (Carnivora): effect of missing data on supertree and supermatrix analyses of multiple gene data sets. Mol. Phylogenet. Evol. 2006, 41 (1): 165–181. PMID 16814570. doi:10.1016/j.ympev.2006.05.025. 
  20. ^ Johnson W. E., Eizirik E., Pecon-Slattery J., Murphy W. J., Antunes A., Teeling E. & O'Brien S. J. The late Miocene radiation of modern Felidae: a genetic assessment. Science. 2006, 311 (5757): 73–77. PMID 16400146. doi:10.1126/science.1122277. 
  21. ^ Janecka J. E., Helgen K. M., Lim N. T., Baba M., Izawa M., Boeadi & Murphy W. J. Evidence for multiple species of Sunda colugo. Curr. Biol. 2008, 18 (21): R1001–R1002. PMID 19000793. doi:10.1016/j.cub.2008.09.005. 
  22. ^ Koepfli K. P. & Wayne R. K. Type I STS markers are more informative than cytochrome B in phylogenetic reconstruction of the Mustelidae (Mammalia: Carnivora). Syst. Biol. 2003, 52 (5): 571–593. PMID 14530127. doi:10.1080/10635150390235368. 
  23. ^ Koepfli K. P., Jenks S. M., Eizirik E., Zahirpour T., Van Valkenburgh B. & Wayne R. K. Molecular systematics of the Hyaenidae: relationships of a relictual lineage resolved by a molecular supermatrix. Mol. Phylogenet. Evol. 2006, 38 (3): 603–620. PMID 16503281. doi:10.1016/j.ympev.2005.10.017. 

外部链接

编辑