太空发射系统

美国运载火箭
(重定向自空间发射系统

太空发射系统(英语:Space Launch System,简称“SLS”)是NASA自2011年以来开发的一种基于航天飞机技术的重型运载火箭。SLS火箭目前的主要用途是搭载猎户座飞船进行阿耳忒弥斯计划,火箭将从位于佛罗里达州肯尼迪航天中心LC-39B发射台发射升空。在前四次阿耳忒弥斯任务之后,美国宇航局计划将太空发射系统的生产和发射移交给深空运输公司(Deep Space Transport LLC),这是波音和诺斯洛普·格鲁门的合资企业[17]。不过,预计至少在2030年之前,阿耳忒弥斯计划每年最多使用一次SLS[18]

太空发射系统
搭载猎户座飞船的太空发射系统Block 1
用途重型运载火箭
制造国家 美国
项目成本238亿美元(名义上)[1]
单次发射费用超过20亿美元,不包括开发费用(估计值)[2][1]
外型及质量参数
高度320英尺(98米)(载人版本)
400英尺(120米)(货舱版本)
直径核心段27.6英尺(8.4米)
质量2,497,000千克(5,505,000英磅)(载人版本)
2,951,000千克(6,506,000英磅)(货舱版本)
级数2
业载量
LEO [注 1]有效载荷
质量
  • Block 1: 95 t(209,000磅)[4]
  • Block 1B: 105 t(231,000磅)[5][6]
  • Block 2: 130 t(290,000磅)[7]
地月转移有效载荷
质量
  • Block 1: > 59,500磅(27 t)[8][9]
  • Block 1B Crew: 83,700磅(38 t)
  • Block 1B Cargo: 92,500磅(42 t)
  • Block 2 Crew: > 94,700磅(43 t)
  • Block 2 Cargo: > 101,400磅(46 t)
相关火箭
相似型号
发射历史
现状服役
发射场肯尼迪航天中心39B号发射台
总发射次数1
成功次数1
著名载荷猎户座飞船
助推器 (Block 1, 1B)
助推器数2台五段式固体火箭助推器
高度54米(177英尺)[10]
直径3.7米(12英尺)
总重730 t(1,600,000磅)[10]
发动机固体燃料
单发推力海平面:3,280,000 lbf(14.6 MN;1,490 tf
真空:3,600,000 lbf(16 MN;1,600 tf[11]
总推力海平面:6,560,000 lbf(29.2 MN;2,980 tf
真空:7,200,000 lbf(32 MN;3,300 tf
比冲269 s(2.64 km/s
推进时间126 秒
燃料PBANAPCP
芯一级 (Block 1, 1B, 2) – 核心级
高度212英尺(65米)[12]
直径27.6英尺(8.4米)
空重187,990磅(85 t)
总重2,365,000磅(1,073 t)
发动机4台RS-25D/E发动机
单发推力海平面:418,000 lbf(1.86 MN)[13]
真空:512,300 lbf(2.279 MN)[13]
比冲海平面:366 s(3.59 km/s)[13]
真空:452 s(4.43 km/s)[13]
推进时间480 秒
燃料液态氢/液态氧
芯二级 (Block 1) – 临时低温推进上级英语Delta Cryogenic Second Stage
高度13.7米(45英尺)[14]
直径5米(16英尺)
空重3,490千克(7,690磅)[15]
总重32,066千克(70,693磅)
发动机1台RL10B-2/C-2发动机
单发推力110.1 kN(24,800 lbf
比冲465.5 s(4.565 km/s)[16]
推进时间1125 秒
燃料液态氢/液态氧
芯二级 (Block 1B, Block 2) – 探索上面级英语Exploration Upper Stage
高度17.3米(57英尺)[15]
直径8.4米(28英尺)
发动机4台RL10C-3发动机、4台RL10C-X发动机
单发推力407.2 kN(91,500 lbf
推进时间
  • 350 秒 (LEO ascent)
  • 925 秒 (TLI burn)
燃料液态氢/液态氧

SLS旨在成为退役航天飞机的继任者以及NASA深空探索计划的主运载火箭[19][20][21]。SLS因利用了货架上的现有的成熟技术,故取代了新开发战神一号战神五号运载火箭的昂贵计划,当时这些运载火箭与“星座计划”的其他部分一起被奥巴马政府取消,而“星座计划”曾是美国旨在重返月球的计划[22][23][24]。载人月球飞行计划,改编入阿耳忒弥斯计划的一部分,也为可能的载人火星任务作准备[25][26]。SLS正在分三个主要阶段开发:Block 1、Block 1B和Block 2,其业载量不断增加[4]。截至2019年8月 (2019-08),SLS Block 1运载火箭将发射前三次阿耳忒弥斯任务[27],随后的五次SLS飞行计划使用Block 1B,之后的所有飞行将使用Block 2[28][26][29]

美国国会在2016年12月授权进行首次发射[30],但SLS的发射至少被推迟了16次,最终2022年才首飞,比原来的6年计划增加了5年多。[注 2][31]

设计

编辑

太空发射系统是一种航天飞机衍生运载火箭英语Shuttle-derived vehicle。起飞阶段由一个核心级和两个改进的航天飞机固体助推器提供动力,上面级负责将有效载荷送入特定的轨道。所有的太空发射系统型号使用同一种核心级,它们之间的差别在于助推器和上面级。[32][33][34][35]

核心级

编辑
 
太空发射系统的三种不同型号:Block 1、Block 1B、Block 2
 
SLS核心阶段从Michoud 装配设施推出,准备运送到斯坦尼斯航天中心

核心级和助推器负责将上面级和有效有效载荷送出大气层并加速到接近轨道速度。核心级包括4台RS-25发动机、液氢燃料箱和液氧氧化剂箱、固体助推器连接点、航空电子设备和主推进系统(MPS)。主推进系统为四台RS-25发动机供应燃料和氧化剂[32],并使用液压驱动发动机的万向节,以及对推进剂罐加压。核心级的四台RS-25发动机在起飞时提供了大约25%的推力。[36][37] 核心级长65米,直径8.4米,在结构和外观上类似于航天飞机外储箱[23][38] 核心级的前四次发射使用16台航天飞机任务剩下的RS-25D发动机。[39][40][41] 洛克达因公司对这些发动机进行了现代化改造以适应太空发射系统。[42] 之后的发射将使用优化的RS-25E发动机,每台的成本降低30%以上,推力较RS-25D的2,281千牛增加到了2,321千牛。[43][44][45][46]

助推器

编辑

太空发射系统Blocks 1和Blocks 1B型使用两个五段式固体火箭助推器,这些助推器基于四段式航天飞机固体助推器额外添加一段而成,除此之外还使用了新的航空电子设备和更轻的绝缘材料,并去掉了降落伞回收系统。[47] 五段式固体火箭助推器比四段式航天飞机固体助推器多提供了25%的冲量,但在使用后不能回收。[48][49]

太空发射系统Blocks 1和Blocks 1B型使用的五段式固体火箭助推器由于库存限制只能支持八次发射。[50] 于是在2019年3月2日提出了助推器报废和延长寿命计划(BOLE)。该计划是由诺斯洛普·格鲁门开发制造新型的固体火箭助推器,用以支持之后的Blocks 2型太空发射系统。这些助推器源自已经取消的OmegA运载火箭的复合外壳固体火箭助推器,助推器性能的提升可使Blocks 2型的近地轨道有效载荷增加到130 t(130 long ton;140 short ton)地月转移轨道有效载荷增加到46 t(45 long ton;51 short ton)。[51][52][53] 截至2021年7月 (2021-07), BOLE正在大力发展, 预计将于2024年首次点火测试。[51]

上面级

编辑

临时低温推进上级(ICPS)将在太空发射系统Block 1型的前三次阿耳忒弥斯登月计划发射中使用。[54] ICPS源自拉长的德尔塔-4运载火箭上面级,由一台RL10火箭发动机提供动力。用于发射的第一个ICPS将使用RL10 B-2型变体, 第二和第三个ICPS将使用 RL10 C-2型变体。[55][56][57] Block 1型能够拥有95 t(93 long ton;105 short ton)的近地轨道运载能力,包括作为有效载荷一部分的ICPS重量。[4]阿耳忒弥斯1号任务中,当火箭的核心级分离后,有效载荷将处在1,806乘30 km(1,122乘19 mi) 的亚轨道上,这便于核心级的安全处置。[58] 然后ICPS将执行轨道注入和随后的地月转移,把猎户座飞船送往月球。[59] ICPS将为阿耳忒弥斯2、3号的载人飞行提供乘员认证。[54]

探索上面级(EUS)计划在阿耳忒弥斯4号及之后的任务中使用,EUS将完成上升阶段然后进行深空轨道注入。[60] EUS将在太空发射系统的Block 1B和Block 2型上使用,其直径与核心级相同为8.4米,由四台RL-10 C3发动机提供动力,最终将升级为使用四个改进的RL10 C-X发动机。[61][62] 截至2022年3月 (2022-03), 波音正在为 EUS 开发一种新的基于复合材料的燃料箱,这将使Block 1B型的地月轨道有效载荷能力增加 30%。[63] 探索上面级(EUS)原先的名称是双用途上面级(DUUS),相对于ICPS是专门为太空发射系统开发的上面级。[60][64]

变体

编辑
太空发射系统不同型号之间的差异
发射序号# 型号 核心级发动机 助推器 上面级 起飞推力 有效载荷量
近地轨道 (LEO) 地月转移 (TLI) 日心轨道 (HCO)
1 1 RS-25D[39] 五段式固体火箭助推器 临时低温推进上级 (ICPS) RL-10B-2发动机[57] 39 MN(8,800,000 lbf[8] 95 metric ton(209,000磅)[4] >27 metric ton(59,500磅)[65][8][9] 未知
2, 3 临时低温推进上级 (ICPS) RL10C-2发动机[55]
4 1B 探索上面级 (EUS)

4台RL10火箭发动机

105 metric ton(231,000磅)[5] 42 metric ton(92,500磅)[65][8][9]
5,6,7,8 RS-25E[44]
9, ... 2 助推器报废和延长寿命计划 (BOLE)[50] 41 MN(9,200,000 lbf)[8] 130 metric ton(290,000磅)[7] >46 metric ton(101,400磅)[65][8][9] 45 metric ton(99,000磅)[4]

发展

编辑

太空发射系统是一种从航天飞机演变而来的重型运载火箭。第一阶段以载重量70吨的星座计划载人任务为主,发射时将产生3810吨的推力;再发展出载重量130吨的货舱型有效载荷任务,发射推力约合4173吨,高度和总重量将分别为117米和2948吨。[66][67]

初步设计显示,航天飞机主发动机航天飞机固态助推器都会被作为本计划的一部分。不像战神五号运载火箭需要另外开发新的燃料槽[67]

沿用航天飞机系统的新飞船

编辑

2011年5月,美国国家航空航天局宣布将已取消的星座计划中的猎户座飞船继续开发,并命名为多功能人员有效载荷舱[68]。在2011年9月所公布的资料显示,第一阶段载人任务会使用一对航天飞机固态助推器以及三颗航天飞机主发动机的改进版本(RS-25D/E),第二节则选用J-2X发动机[69][70]。第二阶段货舱任务会使用一对航天飞机固态助推器的加强版以及五颗航天飞机主发动机的改进版本(RS-25D/E)[70]

2011年9月14日,美国国家航空航天局确定新一代太空发射系统的设计,并说明美国可以将宇航员运送到更远的地方,并且做为人类太空探测的基石[71][72][73]

重视资金运用

编辑

太空发射系统预计花费180亿美元开发,2012年至2017年间,每年将编列30亿美元的预算;其中100亿美元用于太空发射系统本身:20亿美元改建发射台及肯尼迪航天中心:60亿美元用于猎户座载人舱组的研究、制作[74]。根据美国国家航空航天局的预算,从2014年到2017年首次试射前,建造测试版本的SLS火箭需要投入约70亿美元。到2019年,经费投入将达到180亿美元左右,而这笔资金还只是用于研发和设计,并不涵盖火箭的制造成本。新型火箭研制计划的总估计投入将达到360亿美元。

在 2011 年 9 月的参议院与美国国家航空航天局联合介绍中,据称到 2017 年 SLS 计划的预计开发成本为 美元180 亿美元,其中 100 亿美元用于 SLS 火箭,60 亿美元用于猎户座飞船,以及 20 亿美元用于升级 肯尼迪航天中心 的发射台和其他设施。[75][76] Booz Allen Hamilton 为 NASA 撰写的 2011 年独立成本评估报告中,这些成本和时间表被认为是乐观的。[77] 2011 年 NASA 的一分内部文件估计,到 2025 年,四次 95 t(93 long ton;105 short ton) 发射(1 次无人驾驶,3 次载人)的计划总成本至少为 410 亿美元,[78][79] 130 t(130 long ton;140 short ton) 版本准备不早于 2030 年。[80] 人类探索团队估计 2010 年 Block 0 的单位成本为 16 亿美元,Block 1 的单位成本为 18.6 亿美元。[81] 然而,自从做出了这些估计,Block 0 SLS 车辆在 2011 年底被放弃,设计没有完成。[32]

2012 年 9 月,SLS 项目副经理表示,5 亿美元是 SLS 计划每次飞行的合理目标平均成本。[82] 2013 年,《太空评论》估计每次发射的成本为 50 亿美元,具体取决于发射费用。[83][84] NASA 于 2013 年宣布 欧洲空间局 将建造 猎户座服务舱[85] 2014 年 8 月,随着 SLS 计划通过关键决策点 C 审查并进入全面开发阶段,从 2014 年 2 月到计划于 2018 年 9 月启动的成本估计为 70.21 亿美元。[86] 同时,地面系统的修改和建设将需要额外的 18 亿美元。[87]

2018 年 10 月,NASA 监察长 报告称,截至 2018 年 8 月,波音 核心阶段合同已占 SLS 支出 119 亿美元的 40%。到 2021 年,核心预计各阶段耗资 89 亿美元,是最初计划金额的两倍。[88] 2018 年 12 月,NASA 估计 SLS 的年度预算在 2019 年至 2023 年之间将在 21 至 23 亿美元之间。[89]

2019 年 3 月,特朗普政府 向 NASA 发布了 2020 财年预算申请。该预算不包括用于 SLS Block 1B 和 Block 2 的任何资金。因此不确定是否会开发这些 SLS 的未来变体,但国会的行动在通过的预算中恢复了这笔资金。[90] 之前为 SLS Block 1B 计划的几次发射预计将在商业运载火箭上飞行,例如 猎鹰重型火箭新格伦火箭火神火箭[91] 然而,要求为 SLS、猎户座飞船和载人着陆器增加 16 亿美元的预算以及发射清单似乎表明支持 Block 1B 的开发,即 Artemis 3 的首次亮相。Block 1B 将主要用于共同载人的机组人员转移和后勤需求,而不是建造门户。无人驾驶的 Block 1B 计划于 2028 年发射月球表面资产,这是 Artemis 计划的第一个月球前哨基地。2022年3月17日傍晚6时许,组装完成的太空发射系统,由航天飞机运输车(Crawling Transporter)缓慢运出航天器装配大楼;并将花费11个小时的时间运往6.4公里外的肯尼迪航天中心 39B 发射台上,进行火箭湿式演练(Wet Dress Rehearsal,WDR)。[92]

预算编列

编辑

2011至2021财年,SLS计划名义资金总额为212.09亿美元。这相当于2021年通胀后的230.11亿美元。[93]

财年 资金 状态
标称
(百万美金)
2021年[93]
(百万美金)
2011 $1,536.1 $1,829.5 实际[94]
(Formal SLS Program reporting excludes the Fiscal 2011 budget.)[95]
2012 $1,497.5 $1,765.6 实际[96]
2013 $1,414.9 $1,642.7 实际[97]
2014 $1,600.0 $1,822.4 实际[98]
2015 $1,678.6 $1,873.3 实际[99]
2016 $1,971.9 $2,171.7 实际[100]
2017 $2,127.1 $2,299.4 实际[101]
2018 $2,150.0 $2,268.3 实际[102]
2019 $2,150.0 $2,233.1 实际[103]
2020 $2,528.1 $2,561.0 实际[104]
2021 $2,555.0 $2,555.0 颁布[105]
总计:2011–2021 $21,209.2 $23,011.2

SLS 的生产和运营成本为 22 亿美元,探索地面系统(英语:Exploration Ground Systems) 的生产和运营成本为 5.68 亿美元。此外,由于前四次任务属于 Artemis 计划,猎户座飞船的有效有效载荷将花费 10 亿美元,欧洲服务舱将花费 3 亿美元。:23

早期计划 2018年SLS的计划演化 2015 年 3 月在犹他州奥格登西北部的 Orbital ATK 沙漠设施进行的 SLS 助推器测试 探索地面系统 和 Jacobs 准备提升和放置 SLS 火箭的核心级,2021 年 6 月

SLS 是根据 2010 年国会法案(公法 111-267)创建的,其中指示 NASA 创建一个系统,用于将有效有效载荷和机组人员发射到太空,以取代因航天飞机退役而丧失的能力。该法案设定了某些目标,例如能够将 130 吨或更多的有效有效载荷提升到近地轨道,目标日期为 2016 年 12 月 31 日系统全面运行,以及“在可行范围内”使用的指令” 航天飞机和战神 1 号的现有组件、硬件和劳动力, 12 2011 年 9 月 14 日,NASA 宣布了满足这些要求的计划:SLS 的设计,猎户座飞船作为有效有效载荷。

SLS 已经考虑了几种潜在发射配置的未来发展路线,火箭模块的计划演进已被多次修改。考虑了许多选项,所有这些选项都只需要满足国会规定的最低有效有效载荷,包括具有三个主发动机的 Block 0 变体,具有五个主发动机的变体,具有升级助推器而不是改进的第二阶段的 Block 1A 变体, Block 2 有五个主发动机加上地球出发阶段,最多有三个 J-2X 发动机。

在 SLS 设计的最初公告中,NASA 还宣布了“高级助推器竞赛”,以选择将在 SLS 的 Block 2 上使用哪些助推器。几家公司为这次比赛提出了助推器,所有这些都被证明是可行的,洛克达因泰莱迪布朗工程 提出了三个助推发动机,每个发动机都带有双燃烧室,ATK 提出了一种改进的固体火箭助推器,它具有更轻的外壳、更高能的推进剂和四个部分五,普惠洛克达因提出了一种名为 Pyrios 的液体燃料助推器。然而,本次竞赛是为一项开发计划而设计的,在该计划中,Block 1A 之后是 Block 2A,并带有升级的助推器。美国国家航空航天局在 2014 年 4 月取消了 Block 1A 和计划中的竞赛,支持简单地保留战神 I 的五段固体火箭助推器,它们本身是从航天飞机的固体火箭助推器改装而来的,至少到 2020 年代后期。过于强大的先进助推器会导致不合适的高加速度,并且需要对 LC-39B、它的火焰沟槽和移动发射器进行修改。

2013 年 7 月 31 日,SLS 通过了初步设计审查。审查不仅包括火箭和助推器,还包括地面支持和后勤安排。

2014 年 8 月 7 日,SLS Block 1 通过了一个称为关键决策点 C 的里程碑并进入全面开发,预计发射日期为 2018 年 11 月。

EUS期权

2013 年,NASA 和波音公司分析了几种 EUS 发动机选项的性能。该分析基于 105 公吨的第二级可用推进剂负载,并将各级与四台 RL10 发动机、两台 MARC-60 发动机或一台 J-2X 发动机进行比较。 2014 年,NASA 还考虑使用欧洲 Vinci 代替 RL10,后者提供相同的比冲但推力增加 64%,这将以更低的成本实现相同的性能。

2018 年,蓝色起源提交了一份提案,用公司设计和制造的更便宜的替代品取代探索上层,但该提案于 2019 年 11 月被 NASA 以多种理由拒绝;其中包括与现有 EUS 设计相比性能较低,该提案与车辆装配大楼门的高度仅为 390 英尺不兼容,以及 猎户座飞船 组件(如太阳能电池板)的加速度不可接受。:7-8

SRB测试

2009年至2011年,星座计划对五段式固体火箭助推器进行了3次全时程静态点火试验,包括低核心温度和高核心温度测试,以验证极端温度下的性能。 5 段固体火箭助推器将转移到 SLS。 Northrop Grumman Innovation Systems 已经完成了五段固体火箭助推器的全持续时间静态点火测试。合格电机 1 于 2015 年 3 月 10 日进行了测试。合格电机 2 于 2016 年 6 月 28 日成功进行了测试。

上表包含的项目包括SLS的临时上部阶段,即临时低温推进阶段 (ICPS),其中包括 4.12 亿美元的合同。[106]

表中还包括开发Exploration Upper Stage英语Exploration Upper Stage的成本:

财年 开发EUS英语Exploration Upper Stage的资金
标称
(百万美金)
2021年[93]
(百万美金)
2016 $77.0[100] $84.8
2017 $300.0[107][101] $324.3
2018 $300.0[108][102] $316.5
2019 $150.0[109][103] $155.1
2020 $300.0[104] $303.9
2021 $400.0[105][注 3] $400.0
Total: 2016–2021 $1,527.0 $1,584.6

启动成本

编辑

对 SLS 每次发射成本的估计差异很大,部分原因是不确定该计划在运营发射开始前的开发和测试期间将花费多少,部分原因是各机构使用不同的成本衡量标准;但也基于成本估算的不同目的。例如,每增加一次发射的边际成本忽略开发和年度经常性固定成本,而每次发射的总成本包括经常性成本但不包括开发。

对于 SLS 每次发射的成本,以及 SLS 项目投入运营后每年的经常性成本,NASA 都没有官方的估计。每次发射的成本不是一个直接估计的数字,因为它在很大程度上取决于每年发射的次数。[1] 例如,类似地,航天飞机 的估计值是 2012 年的美元,如果每年能够实现 7 次发射,则每次发射的成本为 5.76 亿美元,而在给定年份增加一次额外发射的边际成本估计不到其一半,边际成本仅为 2.52 亿美元。然而,按照它的飞行速度,包括开发在内的每次航天飞机发射的最终成本为 16.4 亿美元。[110]:III−490

NASA 副局长 William H. Gerstenmaier 在 2017 年表示,不会对 NASA 为 SLS 提供的任何品种的每次飞行成本进行官方估算。[111] 其他机构,例如 政府问责办公室 (GAO)、NASA 监察长办公室参议院拨款委员会,以及 美国国家航空航天局监察长办公室然而,管理和预算|白宫管理和预算办公室]]已经公布了每次发射的成本数据。 NASA 的几个内部计划和项目概念研究报告已经发布了包括未来 SLS 发射在内的拟议预算。例如,一份空间天文台的概念研究报告称,NASA 总部在 2019 年建议为 2035 年的 SLS 发射预算 5 亿美元。[112] 2019 年的另一项研究也提出了空间天文台的设想,他们的发射预算以当前美元计算为 6.5 亿美元,或者发射时间为 9.25 亿美元,也就是“2030 年代中期”。[113]

Europa Clipper 是 NASA 的一项科学任务,最初是国会要求在 SLS 上发射的。 NASA 内部和外部的监督机构都不同意这一要求。首先,美国宇航局监察长办公室于2019年5月发布了一份报告[114][115] 这表明 Europa Clipper 需要为 SLS 发射的“边际成本”放弃 8.76 亿美元。然后,2019 年 8 月发布的这封信的附录增加了估计,并表示改用商用火箭将节省超过 10 亿美元。但是,这些节省可能包括与发射计划延迟相关的部分费用;商业替代品可能会比 SLS 更早推出。

该信中引用的 JCL(联合成本和进度置信水平)分析表明,每次发射节省的成本为 7 亿美元,其中 SLS 每次发射 10.5 亿美元,商业替代方案为 3.5 亿美元。[116][117] 最后,白宫管理和预算办公室 (OMB) 于 2019 年 10 月致参议院拨款委员会的一封信显示,SLS 在开发完成后每次发射对纳税人的总成本估计为“超过 20 亿美元”;表示,按 2021 年的美元计算,开发成本为 230 亿美元。[118][注 4] 这封信建议国会取消这一要求,同意 NASA 监察长的意见,并补充说,使用 Europa Clipper 的商业运载火箭而不是 SLS 将总共节省 15 亿美元。 NASA 没有否认这 20 亿美元的发射成本,该机构发言人表示,“随着该机构继续与波音公司就长期生产合同和努力进行谈判,它正在努力降低给定年份单次 SLS 发射的成本确定火箭其他部件的合同和成本”。[1]

OMB 的这个数字取决于建造速度,因此更快地建造更多 SLS 火箭可以降低单位成本。[1] 例如,探索地面系统其唯一作用是支持、组装、集成和发射 SLS——已单独预算每年 6 亿美元的设施固定成本,无论当年发射多少火箭。[119] 然后,在 2019 年 12 月,NASA 局长 Jim Bridenstine 非正式地表示,他不同意 20 亿美元的数字,因为 SLS 发射的边际成本应该会在前几次发射后下降,预计最终将达到 8 亿至 900 美元左右万,尽管合同谈判才刚刚开始。[120]

然后,在 2021 年 7 月,NASA 宣布将使用 SpaceX 猎鹰重型火箭 代替 SLS 来发射 Europa Clipper。[121] 这样做是出于与成本无关的技术原因,总成本节省估计为 20 亿美元。[122][123][124]

2021 年 11 月,发布了一项新的 NASA 监察长办公室 审计,估计至少对于 SLS 的前四次发射,SLS 每次发射的生产和运营成本为 22 亿美元,外加 568 美元百万用于 探索地面系统。此外,由于前四次任务是在 Artemis 计划下进行的,猎户座飞船 的有效有效载荷将花费 10 亿美元,ESA 服务模块将花费 3 亿美元。[125]:23

早期计划

编辑
 
2018年SLS的计划演变
2015 年 3 月在犹他州奥格登西北部的 Orbital ATK 沙漠设施进行的 SLS 助推器测试
2021 年 6 月,探索地面系统 和 Jacobs 准备提升和放置 SLS 火箭的核心级

SLS 是由国会在 2010 年通过的一项公法 111-267 创建的,其中指示 NASA 创建一个系统,用于将有效有效载荷和机组人员发射到太空,以取代因 航天飞机退役而失去的能力.[30] 该法案设定了某些目标,例如能够将 130 吨或更多的有效有效载荷提升到近地轨道,目标日期为 2016 年 12 月 31 日系统全面运行,以及“在可行范围内”使用的指令“来自航天飞机和 战神1号 的现有组件、硬件和劳动力。[30]:12 2011 年 9 月 14 日,NASA 宣布了满足这些要求的计划:SLS 的设计,以 猎户座飞船 作为有效载荷。[126][127][128][129]

SLS 已经考虑了几种潜在发射配置的未来发展路线,火箭模块的计划演进已被多次修改。[130] 考虑了很多选项,所有这些都只需要满足国会规定的最低有效有效载荷,[130] 包括具有三个主要发动机的 Block 0 变体,[32] 具有五个主发动机的变体,[130] 具有升级助推器而不是改进的第二节的 Block 1A 变体,[32] Block 2 有五个主发动机加上 地球出发阶段(英语:Earth Departure Stage),最多有三个 J-2X 发动机。[35]

在 SLS 设计的最初公告中,NASA 还宣布了“高级助推器竞赛”,以选择将在 SLS 的 Block 2 上使用哪些助推器。[126][70][37][131] 几家公司为本次比赛提出了助推器,所有这些都被证明是可行的,[132] 洛克达恩Teledyne Brown 提出了三个增压发动机,每个发动机都有双燃烧室,[133] Alliant Techsystems 提出了一种改进的固体火箭助推器,具有更轻的外壳、更高能的推进剂和四段反而不是五段,[134] Pratt & Whitney RocketdyneDynetics 提出了一种名为 Pyrios 的液体燃料助推器。[135] 然而,本次竞赛是为一项开发计划而设计的,在该计划中,Block 1A 之后是 Block 2A,并带有升级的助推器。 NASA 在 2014 年 4 月取消了 Block 1A 和计划中的竞赛,支持简单地保留 战神1号 的五段固体火箭助推器,它们本身是从 航天飞机 的固体火箭助推器改装而来的,至少到 2020 年代后期。[130][136] 过于强大的先进助推器会导致对人体不合适的加速度,并且需要修改 LC-39B、它的火焰沟槽和 移动发射器.[137][130]

2013 年 7 月 31 日,SLS 通过了初步设计审查。审查不仅包括火箭和助推器,还包括地面支持和后勤安排。[138]

2014 年 8 月 7 日,SLS Block 1 通过了一个称为关键决策点 C 的里程碑并进入全面开发,预计发射日期为 2018 年 11 月。[86][139]

EUS 选项

编辑

2013 年,NASA 和波音公司分析了几种 EUS 发动机选项的性能。该分析基于 105 公吨的第二级可用推进剂负载,并比较了四台 RL10 发动机、两台 MARC-60 发动机或一台 J-2X 发动机的阶段。[140][141] 2014 年,NASA 还考虑使用欧洲的 Vinci 代替 RL10,它提供相同的比冲但推力大 64%,这将以更低的成本换取相同的性能。[142]

2018 年,Blue Origin 提交了一份提案,用公司设计和制造的更便宜的替代品取代SLS第二级(探索上面级),但该提案于 2019 年 11 月被 NASA 以多种理由拒绝;其中包括与现有 EUS 设计相比性能较低,提案与 车辆装配大楼 门的高度仅为 390 英尺不兼容,以及太阳能电池板等猎户座飞船组件的加速度不能接受。[143][144]:7–8

固体火箭助推器(SRB)测试

编辑

从 2009 年到 2011 年,在 星座计划 下,对五节固体火箭助推器进行了 3 次全持续时间静态点火试验,包括低核心温度和高核心温度测试,以验证极端温度下的性能。[145][146][147] 5 段式固体火箭助推器将由 SLS 使用。[130] Northrop Grumman Innovation Systems 已经完成了五段固体火箭助推器的全持续静态点火测试。Qualification Motor 1 于 2015 年 3 月 10 日进行了测试。[148] Qualification Motor 2 于 2016 年 6 月 28 日成功通过测试。[149]

测试和计划

编辑
 
2018年SLS的计划演变
已隐藏部分未翻译内容,欢迎参与翻译

建设

编辑
 
Liquid hydrogen tank for Artemis 2 under construction, as of August 2020
 
"Boat-tail" for Artemis 2 under construction, as of June 2021
 
Engine section shroud structure for Artemis 3 under construction, as of April 2021

截至2020年 (2020-Missing required parameter 1=month!), 已计划了三个太空发射系统的版本: Block 1、Block 1B和Block 2. 它们都采用相同的核心级与4个主发动机, 但Block 1B将使用探索上面级(EUS), 而Block 2将会采用探索上面级与升级的助推器, 也就是助推器报废和延长寿命计划(BOLE).[150][5][151]

在2017年七月联合发射联盟已交付给NASA临时低温推进上级(ICPS), 且2018年11月起已安置在肯尼迪航天中心.[152].[153]

Construction of core stage

编辑

In mid-November 2014, construction of the first Core Stage hardware began using a new welding system in the South Vertical Assembly Building at NASA's Michoud Assembly Facility.[154] Between 2015 and 2017, NASA test fired RS-25 engines in preparation for use on SLS.[43]

The core stage for the first SLS, built at Michoud Assembly Facility by Boeing,[155] had all four engines attached in November 2019,[156] and it was declared finished by NASA in December 2019.[157]

The first core stage left Michoud Assembly Facility for comprehensive testing at Stennis Space Center in January 2020.[158] The static firing test program at Stennis Space Center, known as the Green Run, operated all the core stage systems simultaneously for the first time.[159][160] Test 7 (of 8), the wet dress rehearsal, was carried out in December 2020 and the fire (test 8) took place on 16 January 2021, but shut down earlier than expected,[161] about 67 seconds in total rather than the desired eight minutes. The reason for the early shutdown was later reported to be because of conservative test commit criteria on the thrust vector control system, specific only for ground testing and not for flight. If this scenario occurred during a flight, the rocket would have continued to fly normally. There was no sign of damage to the core stage or the engines, contrary to initial concerns.[162] The second fire test was completed on 18 March 2021, with all 4 engines igniting, throttling down as expected to simulate in-flight conditions, and gimballing profiles. The core stage was shipped to Kennedy Space Center to be mated with the rest of the rocket for Artemis 1. It left Stennis on April 24 and arrived at Kennedy on April 27.[163] It was refurbished there in preparation for stacking.[164] On 12 June 2021, NASA announced the assembly of the first SLS rocket was completed at the Kennedy Space Center. The assembled SLS is planned to be used for the uncrewed Artemis 1 mission in 2022.[165]

While the first SLS for Artemis 1 is being prepared for launch, NASA and Boeing are constructing the next three, for Artemis 2, Artemis 3, and Artemis 4.[166] Boeing stated in July 2021 that while the COVID-19 pandemic has affected their suppliers and schedules, such as delaying parts needed for hydraulics, they still will be able to provide the Artemis 2 SLS Core stage per NASA's schedule, with months to spare.[166] The spray-on foam insulation process for Artemis 2 has been automated since Artemis 1 for most sections of the core stage, saving 12 days in the schedule.[167][166] The Artemis 2 forward skirt, which is the foremost component of the Core stage, was affixed on the liquid oxygen tank in late May 2021.[166] 截至2022年7月 (2022-07), is set to ship to NASA in March 2023.[168] Artemis 3, assembly elements of the thrust structure began at Michoud Assembly Facility in early 2021.[166] The liquid hydrogen tank that is to be used on Artemis 3 was originally planned to be the Artemis 1 tank, but it was set aside as the welds were found to be faulty.[169]:2 Repair techniques were developed, and the tank has reentered production and will be proof tested for strength, for use on Artemis 3.[169]:2

Construction of EUS for Block 1B

编辑

As of July 2021, Boeing is also preparing to begin construction of the Exploration Upper Stage (EUS), which is planned to debut on Artemis 4.[166]

Planned launches

编辑

Originally planned for late 2016, the uncrewed first flight of SLS has slipped more than sixteen times and more than five years.[注 2] As of July 2022, NASA projects the SLS will launch no earlier than 29 August 2022.[192] NASA limits the amount of time the solid rocket boosters can remain stacked to "about a year" from the time two segments are joined.[193] The first and second segments of the Artemis 1 boosters were joined on 7 January 2021.[194] NASA can choose to extend the time limit based on an engineering review.[195] On 29 September 2021, Northrop Grumman indicated that the limit can be extended to eighteen months for Artemis 1, based on an analysis of the data collected when the boosters were being stacked.[165] In late 2015, the SLS program was stated to have a 70% confidence level for the first Orion flight that carries crew, the second SLS flight overall, by 2023;[196][197][198] 截至November 2021年 (November 2021-Missing required parameter 1=month!), NASA delayed Artemis 2 from 2023[199] to May 2024.[200] Template:SLS launches/future

Usage beyond Artemis

编辑

While the SLS is only confirmed for use on the first few Artemis missions, many NASA mission concept studies for robotic missions planned to launch on the SLS, such as: Neptune Odyssey,[201][202] Europa Lander,[203][204][205] Enceladus Orbilander, Persephone,[206] HabEx,[113] Origins Space Telescope,[112] LUVOIR,[207] Lynx,[208] and Interstellar probe.[209] These concept studies were prepared for possible recommendation by the National Academy's Decadal surveys. The Astronomy and Astrophysics Decadal Survey in 2021 recommended a smaller, merged version of HabEx and LUVOIR preceded by a technology maturation program to reduce cost and schedule risk, although the eventual mission may or may not use SLS. In 2022 the Planetary Science Decadal Survey recommended Enceladus Orbilander as the third highest priority for flagship planetary missions in the 2020s. The Heliophysics Decadal Survey, due to be completed in 2024, is considering the Interstellar Probe mission concept.

2021年1月16日,美国国家航空航天局斯坦尼斯航天中心测试太空发射系统的发动机,不过发动机启动仅1分钟后就因技术问题提前熄灭,而搜集所需数据至少需要启动4分钟[210]

2021年3月19日,美国国家航空航天局斯坦尼斯航天中心测试太空发射系统的发动机,并完成8分钟静态点火测试。

2022年3月18日,太空发射系统转移至肯尼迪航天中心39B发射台,预备进行燃料加注测试。

2022年8月3日,美国国家航空航天局发布Artemis-1任务详情,并暂定8月29日 8:33ET发射。

2022年8月29日上午,已加注完推进剂的太空发射系统,核心级(Core Stage)的1具RS-25发动机冷却管线出现液氢泄漏。由于无法即时解决问题,NASA在倒数暂停于40分钟许久之后宣布取消发射,并延后至9月2日的第2个发射窗口(Launch Window)。

2022年9月3日早上,已加注完液态氧的太空发射系统,由于地面设施中的快速断开连接臂(Quick Disconnect Arm)泄漏液态氢,空气中氢气浓度过高而终止加注燃料,发射倒数暂停于T-2:28:53。最后,NASA官方宣布取消此次发射任务,并延后至之后的发射窗口(Launch Window),以便修复设施。

2022年9月26日,为避免火箭受飓风伊恩(Ian)吹袭而损毁,美国国家航空航天局决定将太空发射系统送返垂直组装大楼,亦代表下次发射窗口将不早于2022年11月。

2022年11月8日,美国国家航空航天局因应飓风妮可(Nicole)吹袭佛罗里达州,将发射时间由11月14日推迟至11月16日[211]

2022年11月16日,太空发射系统于肯尼迪航天中心39B发射台顺利升空,猎户座号并进入预定轨道。[212][213]

一个非官方与非正式的单位在预算的最坏状态列出一些太空发射系统的早期发射排程[214]

 
美国国家航空航天局的太空发射系统从2011年2月时的参考配置
任务 组合 当前状态 发射时间 目标 备注
Artemis-1 Block 1 (不载人) 成功 2022年11月16日1:47:44 (EST) 6:47:44 (UTC) 将不载人的猎户座飞船进行飞掠月球2次的任务。 第一次发射尝试因阀门异常导致三号发动机未能达到目标温度而推迟
第二次发射尝试因快速断开连接装置泄漏液态氢而中止,加上受飓风威胁,SLS运返VAB作进一步检查。
第三次发射尝试因飓风威胁而推迟至11月16日。
最终Artemis-1成功于11月16日发射,猎户座号成功进入预定轨道,并按原定计划顺利返回地球。
Artemis-2 Block 1 (载人) 建造中 不早于2024年11月 宇航员将乘坐猎户座飞船进行飞掠月球的任务。
Artemis-3 Block 1 (载人) 建造中 预计2025年 宇航员将乘坐猎户座飞船于月球轨道与人类登陆系统(SpaceX星舰)会合,并进行登月任务。
Artemis-4 Block 1B (载人及载货) 建造中 预计2026年 将发射月球门户模块,并由宇航员进行轨道会合
Artemis-5 Block 1B (载人及载货) 已计划 预计2027年 将发射月球门户模块及月球探索运输系统,并由宇航员进行相关任务。

批评

编辑

SLS因计划成本、进展缓慢、缺乏商业参与、立法使用航天飞机组件飞行器的非竞争性而受到批评。

已隐藏部分未翻译内容,欢迎参与翻译

资金

编辑

In 2011, Rep. Tom McClintock and other groups called on the Government Accountability Office to investigate possible violations of the Competition in Contracting Act, arguing that Congressional mandates forcing NASA to use Space Shuttle components for the SLS are de facto non-competitive, single-source requirements assuring contracts to existing Shuttle suppliers.[215][216][217] The Competitive Space Task Force, in September 2011, said that the new government launcher directly violates NASA's charter, the Space Act, and the 1998 Commercial Space Act requirements for NASA to pursue the "fullest possible engagement of commercial providers" and to "seek and encourage, to the maximum extent possible, the fullest commercial use of space".[218][217] Opponents of the heavy launch vehicle have critically used the name "Senate launch system",[56][217][219]a name that was still being used by opponents to criticize the program in 2021, as "the NASA Inspector General said the total cost of the rocket would reach $27 billion through 2025".[220]

Lori Garver, a former NASA Deputy Administrator, called for canceling the launch vehicle alongside the Mars 2020 rover.[221] Phil Plait shared his criticism of the SLS in light of ongoing budget tradeoffs between the Commercial Crew Development and SLS budgets, also referring to earlier critiques by Garver.[222] In 2019, the Government Accountability Office found that NASA had awarded Boeing over $200 million for service with ratings of good to excellent despite cost overruns and delays. 截至2019年 (2019-Missing required parameter 1=month!), the maiden launch of the SLS was expected in 2021.[223][224] NASA continued to expect that the first orbital launch would be in 2021 as late as May 2021.[182]

 
Visual from the March 2020 Inspector General report, showing how NASA used accounting to "mask" a cost increase by moving the boosters (which cost $889 million) from the SLS to another cost center, without updating the SLS budget to match[225]:iv,22

NASA moved out $889 million of costs relating to SLS boosters, but did not update the SLS budget to match, a March 2020 Inspector General report found. This kept the budget overrun to 15% by FY 2019.[225]:22 At 30%, NASA would have to notify Congress and stop funding unless Congress reapproves and provides additional funding.[225]:21–23 The Inspector General report found that were it not for this "masking" of cost, the overrun would have been 33% by FY 2019.[225]:iv,23 The GAO separately stated "NASA's current approach for reporting cost growth misrepresents the cost performance of the program".[226]:19–20

On 1 May 2020, NASA awarded a contract extension to Aerojet Rocketdyne to manufacture 18 additional RS-25 engines with associated services for $1.79 billion, bringing the total RS-25 contract value to almost $3.5 billion.[227][44] Ars Technica commented that the average cost of each RS-25 therefore rose to $146 million, so each SLS launch uses $580 million for its four engines. Ars noted that for the cost of just one engine, six more powerful RD-180 engines could be purchased, or nearly an entire Falcon Heavy launch with two-thirds of the SLS lift capacity.[227][228] Former NASA Administrator Charlie Bolden, who oversaw the initial design and development of the SLS, also criticized of the program in an interview with Politico in September 2020. Bolden said that the "SLS will go away ... because at some point commercial entities are going to catch up." Bolden further stated, "They are really going to build a heavy-lift launch vehicle sort of like SLS that they will be able to fly for a much cheaper price than NASA can do SLS. That's just the way it works."[229]

建议的替代方案

编辑
 
Space Launch System and Falcon 9 at Launch Complex 39, the former is preparing for the Axiom Mission 1, and the latter for the Artemis 1 mission.

In 2009, the Augustine commission proposed a commercial 75 t(83 short ton) launcher with lower operating costs and noted that a 40—60 t(44—66 short ton) launcher was the minimum required to support lunar exploration.[230] In 2011–2012, the Space Access Society, Space Frontier Foundation, and The Planetary Society called for the cancellation of the project, arguing that the SLS will consume the funds for other projects from the NASA budget.[218][215][231] U.S. Representative Dana Rohrabacher and others proposed that an orbital propellant depot should be developed and the Commercial Crew Development program accelerated instead.[218][232][233][234][235]

A NASA study that was not publicly released[236][237] and another from the Georgia Institute of Technology showed this option to be possibly cheaper.[238][239] In 2012, the United Launch Alliance also suggested using existing rockets with on-orbit assembly and propellant depots as needed. The lack of competition in the SLS design was highlighted.[240][241][242][219][243] In the summer of 2019, a former ULA employee claimed that Boeing, NASA's prime contractor for SLS, viewed orbital refueling technology as a threat to the SLS and blocked further investment in it.[244] In 2011, Robert Zubrin, founder of Mars Society and Mars Direct, suggested that a heavy lift vehicle could be developed for $5 billion on fixed-price requests for proposal.[245] In 2010, SpaceX's CEO Elon Musk claimed that his company could build a launch vehicle in the 140—150 t(310,000—330,000磅) payload range for $2.5 billion, or $300 million (in 2010 dollars) per launch, not including a potential upper-stage upgrade.[246][247]

助推器测试相关

编辑

备注

编辑
  1. ^ 200-km (124-mi) altitude, 28.5° inclination, circular[3]
  2. ^ 2.0 2.1
    Then-planned launch date history
    Date Planned launch date
    October 2010 31 December 2016[30][22][170][171]
    September 2011 2017[172][173][171]
    August 2014 December 2017[171]
    December 2014 June - July 2018[174]
    13 April 2017[矛盾] November 2018[175]
    28 April 2017 2019[176][171]
    November 2017 June 2020[177]
    December 2019 November 2020[178][179]
    21 February 2020 18 April 2021[179]
    28 February 2020 Mid to late 2021[180]
    May 2020 22 November 2021[181][182]
    August 2021 December 2021[183][184]
    22 October 2021 12 February 2022[185][186]
    17 December 2021 March - April 2022[187]
    February 2022 May 2022[188]
    March 2022 June 2022[189]
    26 April 2022 23 August 2022[190][191]
    20 July 2022 8:33 am ET (12:33 UTC), 29 August 2022[192]
  3. ^ The FY2021 spending plan indicates that this is for "Block 1B (non-add) (including EUS)"
  4. ^ 引用错误:没有为名为totalcost的参考文献提供内容

参考

编辑
  1. ^ 1.0 1.1 1.2 1.3 1.4 Berger, Eric. NASA does not deny the "over US$2 billion" cost of a single SLS launch. Ars Technica. 2019-11-08 [2019-11-13]. (原始内容存档于2019-11-11). The White House number appears to include both the "marginal" cost of building a single SLS rocket as well as the "fixed" costs of maintaining a standing army of thousands of employees and hundreds of suppliers across the country. Building a second SLS rocket each year would make the per-unit cost "significantly less" 
  2. ^ White House warns Congress about Artemis funding. SpaceNews. 2019-11-07 [2019-11-13]. (原始内容存档于2021-09-30). 
  3. ^ 2018 draft factsheet of SLS capabilities (PDF). NASA. 2018-08-20 [2022-08-24]. (原始内容存档 (PDF)于2020-08-07). 
  4. ^ 4.0 4.1 4.2 4.3 4.4 Harbaugh, Jennifer. The Great Escape: SLS Provides Power for Missions to the Moon. NASA. 2018-07-09 [2018-09-04]. (原始内容存档于2019-12-11).    本文含有此来源中属于公有领域的内容。
  5. ^ 5.0 5.1 5.2 Space Launch System (PDF). NASA Facts. NASA. 2017-10-11 [2018-09-04]. FS-2017-09-92-MSFC. (原始内容存档 (PDF)于2018-12-24).    本文含有此来源中属于公有领域的内容。
  6. ^ NASA's Space Launch System: Exploration, Science, Security (PDF). The Boeing Company. [2021-10-04]. (原始内容存档 (PDF)于2021-08-09). 
  7. ^ 7.0 7.1 Creech, Stephen. NASA's Space Launch System: A Capability for Deep Space Exploration (PDF). NASA: 2. April 2014 [2018-09-04]. (原始内容存档 (PDF)于2016-03-07).    本文含有此来源中属于公有领域的内容。
  8. ^ 8.0 8.1 8.2 8.3 8.4 8.5 Mohon, Lee. Space Launch System (SLS) Overview. NASA. 2015-03-16 [2019-07-06]. (原始内容存档于2019-07-25).    本文含有此来源中属于公有领域的内容。
  9. ^ 9.0 9.1 9.2 9.3 SLS Lift Capabilities and Configurations (PDF). NASA. 2020-04-29 [2021-01-20]. (原始内容存档 (PDF)于2020-09-21).    本文含有此来源中属于公有领域的内容。
  10. ^ 10.0 10.1 Space Launch System Solid Rocket Booster. NASA. February 2021 [2022-08-16]. (原始内容存档于2022-07-03).    本文含有此来源中属于公有领域的内容。
  11. ^ Redden, Jeremy J. SLS Booster Development. NASA Technical Reports Server. 2015-07-27 [2020-10-01]. (原始内容存档于2021-08-23).    本文含有此来源中属于公有领域的内容。
  12. ^ SLS Core Stage Fact Sheet (PDF). NASA. [2021-10-04]. (原始内容存档 (PDF)于2021-02-20).    本文含有此来源中属于公有领域的内容。
  13. ^ 13.0 13.1 13.2 13.3 RS-25 Engine. [2021-06-12]. (原始内容存档于2021-08-12).    本文含有此来源中属于公有领域的内容。
  14. ^ What is ICPS?. United Launch Alliance. 2021-06-23 [2021-10-04]. (原始内容存档于2021-06-23).    本文含有此来源中属于公有领域的内容。
  15. ^ 15.0 15.1 Space Launch System. 2018-09-09 [2021-10-04]. (原始内容存档于2021-10-05). 
  16. ^ RL10 Engine. [2021-07-05]. (原始内容存档于2021-07-09).    本文含有此来源中属于公有领域的内容。
  17. ^ Potter, Sean Sean. NASA Prepares for Space Launch System Rocket Services Contract. NASA. 2022-07-27 [2022-08-10]. (原始内容存档于2022-08-10). 
  18. ^ Weitering, Hanneke. NASA has a plan for yearly Artemis moon flights through 2030. The first one could fly in 2021.. Space.com. 2020-02-12 [2020-02-20]. (原始内容存档于2020-02-28). 
  19. ^ Siceloff, Steven. SLS Carries Deep Space Potential. nasa.gov. NASA. 2015-04-12 [2018-01-02]. (原始内容存档于2018-12-24).    本文含有此来源中属于公有领域的内容。
  20. ^ World's Most Powerful Deep Space Rocket Set To Launch In 2018. iflscience.com. 2014-08-29 [2021-09-19]. (原始内容存档于2019-07-07). 
  21. ^ Chiles, James R. Bigger Than Saturn, Bound for Deep Space. airspacemag.com. October 2014 [2018-01-02]. (原始内容存档于2019-12-12). 
  22. ^ 22.0 22.1 S.3729 – National Aeronautics and Space Administration Authorization Act of 2010. United States Congress. 2010-10-11 [2020-09-14]. (原始内容存档于2021-04-28).    本文含有此来源中属于公有领域的内容。
  23. ^ 23.0 23.1 Stephen Clark. NASA to set exploration architecture this summer. Spaceflight Now. 2011-03-31 [2011-05-26]. (原始内容存档于2011-05-15). 
  24. ^ Day, Dwayne. Burning thunder. The Space Review. 2013-11-25 [2014-08-17]. (原始内容存档于2014-08-19). 
  25. ^ Finally, some details about how NASA actually plans to get to Mars. arstechnica.com. 2017-03-28 [2018-01-02]. (原始内容存档于2019-07-13). 
  26. ^ 26.0 26.1 Gebhardt, Chris. NASA finally sets goals, missions for SLS – eyes multi-step plan to Mars. NASASpaceFlight.com. 2017-04-06 [2017-08-21]. (原始内容存档于2017-08-21). 
  27. ^ Gebhardt, Chris. Eastern Range updates "Drive to 48" launches per year status. NASASpaceFlight.com. 2019-08-15 [2020-01-06]. (原始内容存档于2019-11-30). NASA, on the other hand, will have to add this capability to their SLS rocket, and Mr. Rosati said NASA is tracking that debut for the Artemis 3 mission in 2023. 
  28. ^ Space Launch System. aerospaceguide.net. [2014-04-09]. (原始内容存档于2019-07-26). 
  29. ^ Harbaugh, Jennifer. NASA Continues Testing, Manufacturing World's Most Powerful Rocket. nasa.gov. NASA. 2017-05-12 [2021-08-12]. (原始内容存档于2017-05-24).    本文含有此来源中属于公有领域的内容。
  30. ^ 30.0 30.1 30.2 30.3 Public Law 111–267 111th Congress, 42 USC 18322. SEC. 302 (c) (2) 42 USC 18323. SEC. 303 (a) (2) (PDF): 11–12. 2010-10-11 [2020-09-14]. (原始内容存档 (PDF)于2020-11-12). 42 USC 18322. SEC. 302 SPACE LAUNCH SYSTEM AS FOLLOW-ON LAUNCH VEHICLE TO THE SPACE SHUTTLE [...] (c) MINIMUM CAPABILITY REQUIREMENTS (1) IN GENERAL — The Space Launch System developed pursuant to subsection (b) shall be designed to have, at a minimum, the following: (A) The initial capability of the core elements, without an upper stage, of lifting payloads weighing between 70 tons and 100 tons into low-Earth orbit in preparation for transit for missions beyond low Earth orbit [...] (2) FLEXIBILITY [...] (Deadline) Developmental work and testing of the core elements and the upper stage should proceed in parallel subject to appro-priations. Priority should be placed on the core elements with the goal for operational capability for the core elements not later than December 31, 2016 [...] 42 USC 18323. SEC. 303 MULTI-PURPOSE CREW VEHICLE (a) INITIATION OF DEVELOPMENT (1) IN GENERAL — The Administrator shall continue the development of a multi-purpose crew vehicle to be available as soon as practicable, and no later than for use with the Space Launch System [...] (2) GOAL FOR OPERATIONAL CAPABILITY. It shall be the goal to achieve full operational capability for the transportation vehicle developed pursuant to this subsection by not later than December 31, 2016. For purposes of meeting such goal, the Administrator may undertake a test of the transportation vehicle at the ISS before that date. 
  31. ^ NASA Adjusts Dates for Artemis I Cryogenic Demonstration Test and Launch. [2022-09-19]. (原始内容存档于2022-09-12). 
  32. ^ 32.0 32.1 32.2 32.3 32.4 Bergin, Chris. SLS trades lean towards opening with four RS-25s on the core stage. NASASpaceFlight.com. 2011-10-04 [2013-09-16]. (原始内容存档于2019-07-16). 
  33. ^ Chris Bergin. SLS planning focuses on dual phase approach opening with SD HLV. NASASpaceFlight.com. 2011-04-25 [2012-01-26]. (原始内容存档于2019-06-29). 
  34. ^ Bergin, Chris. Managers SLS announcement after SD HLV victory. NASASpaceFlight.com. 2011-06-16 [2012-01-26]. (原始内容存档于2012-01-29). 
  35. ^ 35.0 35.1 Bergin, Chris. Acronyms to Ascent – SLS managers create development milestone roadmap. NASASpaceFlight.com. 2012-02-23 [2012-04-09]. (原始内容存档于2012-04-30). 
  36. ^ Harbaugh, Jennifer. NASA, Public Marks Assembly of SLS Stage with Artemis Day. nasa.gov. NASA. 2019-12-09 [2019-12-10]. (原始内容存档于2020-02-06). NASA and the Michoud team will shortly send the first fully assembled, 212-foot-tall core stage [...] 27.6-feet-in-diameter tanks and barrels.    本文含有此来源中属于公有领域的内容。
  37. ^ 37.0 37.1 space launch system (PDF). nasa.gov. 2012. (原始内容 (PDF)存档于2012-08-13).    本文含有此来源中属于公有领域的内容。
  38. ^ Chris Bergin. SLS finally announced by NASA – Forward path taking shape. NASASpaceFlight.com. 2011-09-14 [2012-01-26]. (原始内容存档于2019-09-02). 
  39. ^ 39.0 39.1 Evans, Ben. NASA Orders 18 More RS-25 Engines for SLS Moon Rocket, at $1.79 Billion. AmericaSpace. 2020-05-02 [2021-10-13]. (原始内容存档于2021-08-31). 
  40. ^ Sloss, Philip. NASA ready to power up the RS-25 engines for SLS. NASASpaceFlight.com. 2015-01-02 [2015-03-10]. (原始内容存档于2019-05-15). 
  41. ^ Boen, Brooke. RS-25: The Clark Kent of Engines for the Space Launch System. NASA. 2015-03-02 [2021-03-29]. (原始内容存档于2020-12-24). 
  42. ^ Harbaugh, Jennifer. Space Launch System RS-25 Core Stage Engines. NASA. 2020-01-29 [2021-08-29]. (原始内容存档于2021-03-18). 
  43. ^ 43.0 43.1 Campbell, Lloyd. NASA conducts 13th test of Space Launch System RS-25 engine. SpaceflightInsider.com. 2017-03-25 [2017-04-29]. (原始内容存档于2019-04-26). 
  44. ^ 44.0 44.1 44.2 NASA Awards Aerojet Rocketdyne $1.79 Billion Contract Modification to Build Additional RS-25 Rocket Engines to Support Artemis Program | Aerojet Rocketdyne. www.rocket.com. [2021-03-29]. (原始内容存档于2021-03-23). 
  45. ^ Sloss, Philip. NASA, Aerojet Rocketdyne plan busy RS-25 test schedule for 2021. NASASpaceFlight. 2020-12-31 [2021-10-13]. (原始内容存档于2021-04-09). 
  46. ^ Ballard, Richard. Next-Generation RS-25 Engines for the NASA Space Launch System (PDF). NASA Marshall Space Flight Center: 3. 2017 [2021-10-13]. (原始内容存档 (PDF)于2021-10-13). 
  47. ^ Four to Five: Engineer Details Changes Made to SLS Booster. 2016-01-10 [2020-06-09]. (原始内容存档于2020-07-25). 
  48. ^ Priskos, Alex. Five-segment Solid Rocket Motor Development Status (PDF). ntrs.nasa.gov (NASA). 2012-05-07 [2015-03-11]. (原始内容存档 (PDF)于2018-12-24).    本文含有此来源中属于公有领域的内容。
  49. ^ Space Launch System: How to launch NASA's new monster rocket. NASASpaceFlight.com. 2012-02-20 [2012-04-09]. (原始内容存档于2019-11-16). 
  50. ^ 50.0 50.1 Bergin, Chris. SLS requires Advanced Boosters by flight nine due to lack of Shuttle heritage components. NASASpaceFlight.com. 2018-05-08 [2019-11-15]. (原始内容存档于2019-06-01). 
  51. ^ 51.0 51.1 Sloss, Philip. NASA, Northrop Grumman designing new BOLE SRB for SLS Block 2 vehicle. NASASpaceFlight. 2021-07-12 [2021-08-13]. (原始内容存档于2021-08-13). 
  52. ^ Tobias, Mark E.; Griffin, David R.; McMillin, Joshua E.; Haws, Terry D.; Fuller, Micheal E. Booster Obsolescence and Life Extension (BOLE) for Space Launch System (SLS) (PDF). NASA Technical Reports Server (NASA). 2019-03-02 [2019-11-15]. (原始内容存档 (PDF)于2019-11-15).    本文含有此来源中属于公有领域的内容。
  53. ^ Tobias, Mark E.; Griffin, David R.; McMillin, Joshua E.; Haws, Terry D.; Fuller, Micheal E. Booster Obsolescence and Life Extension (BOLE) for Space Launch System (SLS) (PDF). NASA Technical Reports Server. NASA. 2020-04-27 [2021-08-12]. (原始内容存档 (PDF)于2021-01-27).    本文含有此来源中属于公有领域的内容。
  54. ^ 54.0 54.1 Upper Stage RL10s arrive at Stennis for upcoming SLS launches February 2020. NASASpaceFlight.com. 2020-02-03 [2020-02-15]. (原始内容存档于2020-02-15). 
  55. ^ 55.0 55.1 NASA'S SPACE LAUNCH SYSTEM BEGINS MOVING TO THE LAUNCH SITE (PDF). NASA. 2020-04-15 [2021-10-12]. (原始内容存档 (PDF)于2021-10-12). 
  56. ^ 56.0 56.1 Rosenberg, Zach. Delta second stage chosen as SLS interim. Flight International. 2012-05-08 [2021-10-07]. (原始内容存档于2012-07-27). 
  57. ^ 57.0 57.1 Henry, Kim. Getting to Know You, Rocket Edition: Interim Cryogenic Propulsion Stage. nasa.gov. 2014-10-30 [2020-07-25]. (原始内容存档于2020-08-06).    本文含有此来源中属于公有领域的内容。
  58. ^ Batcha, Amelia L.; Williams, Jacob; Dawn, Timothy F.; Gutkowski, Jeffrey P.; Widner, Maxon V.; Smallwood, Sarah L.; Killeen, Brian J.; Williams, Elizabeth C.; Harpold, Robert E. Artemis I Trajectory Design and Optimization (PDF). NASA Technical Reports Server. NASA. 2020-07-27 [2021-09-08]. (原始内容存档 (PDF)于2021-09-09).    本文含有此来源中属于公有领域的内容。
  59. ^ Space Launch System Data Sheet. SpaceLaunchReport.com. 2014-05-27 [2014-07-25]. (原始内容存档于2014-10-21). 
  60. ^ 60.0 60.1 SLS prepares for PDR – Evolution eyes Dual-Use Upper Stage. NASASpaceFlight.com. June 2013 [2015-03-12]. (原始内容存档于2013-09-14). 
  61. ^ NASA confirms EUS for SLS Block 1B design and EM-2 flight. NASASpaceFlight.com. [2014-07-24]. (原始内容存档于2014-07-16). 
  62. ^ Sloss, Philip. NASA, Boeing looking to begin SLS Exploration Upper Stage manufacturing in 2021. Nasaspaceflight. 2021-03-04 [2021-06-23]. (原始内容存档于2021-06-24). 
  63. ^ Gebhardt, Chris. With all-composite cryogenic tank, Boeing eyes mass-reducing space, aviation applications. 2022-03-05 [2022-03-18]. (原始内容存档于2022-03-07). 
  64. ^ Bergin, Chris. SLS positioning for ARRM and Europa missions. NASASpaceflight.com. 2014-03-28 [2014-11-08]. (原始内容存档于2021-12-03). 
  65. ^ 65.0 65.1 65.2 Space Launch System Lift Capabilities and Configurations (PDF). 2018-08-20 [2020-03-07]. (原始内容存档 (PDF)于2020-08-07).    本文含有此来源中属于公有领域的内容。
  66. ^ Featured Legislation: The NASA Authorization Act of 2010. United States Senate. 2010-07-15 [2011-05-26]. (原始内容存档于2011-04-10). 
  67. ^ 67.0 67.1 Clark, Stephen. NASA to set exploration architecture this summer. spaceflightnow.com. 2011-03-31 [2011-05-26]. (原始内容存档于2011-05-15). 
  68. ^ [1]页面存档备份,存于互联网档案馆). NASA
  69. ^ [2]页面存档备份,存于互联网档案馆). nasaspaceflight.com
  70. ^ 70.0 70.1 70.2 Keith Cowing. NASA’s New Space Launch System Announced – Destination TBD. SpaceRef. 2011-09-14 [2012-01-26]. (原始内容存档于2012-06-04). 
  71. ^ Release:11-301, NASA. NASA Announces Design For New Deep Space Exploration System. NASA. 2011-09-14 [2011-09-14]. (原始内容存档于2011-09-21). 
  72. ^ VideoLibrary, C-Span. Press Conference on the Future of NASA Space Program. c-span.org. 2011-09-14 [2011-09-14]. (原始内容存档于2012-02-08). 
  73. ^ NewYorkTimes, The. NASA Unveils New Rocket Design. nytimes.com. 2011-09-14 [2011-09-14]. (原始内容存档于2013-03-08). 
  74. ^ Marcia Smith. New NASA Crew Transportation System to Cost $18 Billion Through 2017. spacepolicyonline. 2011-09-14 [2011-09-15]. [永久失效链接]
  75. ^ Smith, Marcia. New NASA Crew Transportation System to Cost US$18 Billion Through 2017. Space Policy Online. 2011-09-14 [2011-09-15]. (原始内容存档于2015-04-02). 
  76. ^ Bill Nelson, Kay Bailey Hutchison, Charles F. Bolden. Future of NASA Space Program. Washington, D.C.: Cspan.org. 2011-09-14 [2022-08-18]. (原始内容存档于2022-08-18). 
  77. ^ Booz Allen Hamilton. Independent Cost Assessment of the Space Launch System, Multi-purpose Crew Vehicle and 21st Century Ground Systems Programs: Executive Summary of Final Report (PDF). nasa.gov. 2011-08-19 [2012-03-03]. (原始内容存档 (PDF)于2012-03-02).    本文含有此来源中属于公有领域的内容。
  78. ^ Paszior, Andy. White House Experiences Sticker Shock Over NASA's Plans. The Wall Street Journal. 2011-09-07 [2015-02-22]. (原始内容存档于2017-12-09).  参数|newspaper=与模板{{cite web}}不匹配(建议改用{{cite news}}|website=) (帮助)
  79. ^ ESD Integration, Budget Availability Scenarios (PDF). Space Policy Online. 2011-08-19 [2011-09-15]. (原始内容存档 (PDF)于2011-12-09). 
  80. ^ Smith, Marcia. The NASA Numbers Behind That WSJ Article. Space Policy Online. 2011-09-09 [2011-09-15]. (原始内容存档于2013-01-04). 
  81. ^ HEFT Phase I Closeout (PDF). nasawatch.com: 69. September 2010 [2012-03-25]. (原始内容存档 (PDF)于2021-09-30). 
  82. ^ NASA's huge new rocket may cost US$500 million per launch. NBC News. 2012-09-12 [2019-11-13]. (原始内容存档于2020-08-12). 
  83. ^ Lee Roop. NASA defends Space Launch System against charge it 'is draining the lifeblood' of space program. al.com. 2013-07-29 [2015-02-18]. (原始内容存档于2015-02-18). 
  84. ^ Strickland, John. Revisiting SLS/Orion launch costs. The Space Review. 2013-07-15 [2015-02-18]. (原始内容存档于2015-02-18). 
  85. ^ NASA Signs Agreement for a European-Provided Orion Service Module. NASA. 2015-04-12 [2013]. (原始内容存档于2013-01-18).    本文含有此来源中属于公有领域的内容。
  86. ^ 86.0 86.1 Foust, Jeff. SLS Debut Likely To Slip to 2018. SpaceNews. 2014-08-27 [2015-03-12]. (原始内容存档于2021-09-30). 
  87. ^ Davis, Jason. NASA Budget Lists Timelines, Costs and Risks for First SLS Flight. The Planetary Society. [2015-03-11]. (原始内容存档于2015-03-12). 
  88. ^ NASA's Management of the Space Launch System Stages Contract (PDF). oig.nasa.gov. NASA Office of Inspector General Office of Audits. 2018-10-10 [2018-10-14]. (原始内容存档 (PDF)于2018-10-10).    本文含有此来源中属于公有领域的内容。
  89. ^ NASA FY 2019 Budget Estimates (PDF). nasa.gov: BUD-2. [2018-12-16]. (原始内容存档 (PDF)于2018-12-24).    本文含有此来源中属于公有领域的内容。
  90. ^ Smith, Rich. Is NASA Preparing to Cancel Its Space Launch System?. The Motley Fool. 2019-03-26 [2019-05-15]. (原始内容存档于2019-06-23). 
  91. ^ NASA FY 2019 Budget Overview (PDF). [2019-06-24]. (原始内容存档 (PDF)于2019-12-04).  Quote: "Supports launch of the Power and Propulsion Element on a commercial launch vehicle as the first component of the LOP–Gateway, (page 14)   本文含有此来源中属于公有领域的内容。
  92. ^ SLS Rollout, NASA's Most Powerful Rocket Ever. NASASpaceflight. 2022-03-17 [2022-03-18]. (原始内容存档于2022-03-18). 
  93. ^ 93.0 93.1 93.2 NASA FY20 Inflation Tables – to be utilized in FY21. NASA: Inflation Table. [2021-10-11]. (原始内容存档于2022-08-03).    本文含有此来源中属于公有领域的内容。
  94. ^ FY 2013 Complete Budget Estimates (PDF). NASA. [2021-10-03]. (原始内容存档 (PDF)于2021-09-06).    本文含有此来源中属于公有领域的内容。
  95. ^ NASA, Assessments of Major Projects (PDF). General Accounting Office: 63. March 2016 [2016-06-23]. (原始内容存档 (PDF)于2016-04-13).    本文含有此来源中属于公有领域的内容。
  96. ^ FY 2014 Complete Budget Estimates (PDF). NASA. [2021-10-03]. (原始内容存档 (PDF)于2021-09-06).    本文含有此来源中属于公有领域的内容。
  97. ^ FY 2013 Operating Plan (PDF). NASA. [2021-10-03]. (原始内容存档 (PDF)于2021-01-19).    本文含有此来源中属于公有领域的内容。
  98. ^ FY 2014 Operating Plan (PDF). NASA. [2021-10-03]. (原始内容存档 (PDF)于2017-06-11).    本文含有此来源中属于公有领域的内容。
  99. ^ FY 2015 Operating Plan Update (Aug. 2015) (PDF). NASA. [2021-10-03]. (原始内容存档 (PDF)于2017-02-17).    本文含有此来源中属于公有领域的内容。
  100. ^ 100.0 100.1 FY 2016 Operating Plan (Sept. 4 update) (PDF). NASA. [2021-10-03]. (原始内容存档 (PDF)于2021-10-04).    本文含有此来源中属于公有领域的内容。
  101. ^ 101.0 101.1 FY 2017 Operating Plan (PDF). NASA. [2021-10-03]. (原始内容存档 (PDF)于2021-10-04).    本文含有此来源中属于公有领域的内容。
  102. ^ 102.0 102.1 FY 2018 Operating Plan (PDF). NASA. [2021-10-03]. (原始内容存档 (PDF)于2021-07-12).    本文含有此来源中属于公有领域的内容。
  103. ^ 103.0 103.1 FY 2019 Spend Plan (PDF). NASA. [2021-10-03]. (原始内容存档 (PDF)于2020-11-11).    本文含有此来源中属于公有领域的内容。
  104. ^ 104.0 104.1 Updated FY 2020 Spending Plan (PDF). NASA. [2021-10-03]. (原始内容存档 (PDF)于2020-11-01).    本文含有此来源中属于公有领域的内容。
  105. ^ 105.0 105.1 Updated FY 2021 Spending Plan (PDF). NASA. [2021-10-03]. (原始内容存档 (PDF)于2021-09-23).    本文含有此来源中属于公有领域的内容。
  106. ^ Definitive Contract NNM12AA82C. govtribe.com. [2018-12-16]. (原始内容存档于2021-09-30).    本文含有此来源中属于公有领域的内容。
  107. ^ NASA outlines plan for 2024 lunar landing. SpaceNews. 2019-05-01 [2019-05-15]. (原始内容存档于2021-09-30). 
  108. ^ Berger, Eric. NASA's full Artemis plan revealed: 37 launches and a lunar outpost. Ars Technica. 2019-05-20 [2019-05-20]. (原始内容存档于2019-05-23). 
  109. ^ Sloss, Philip. Amid competing priorities, Boeing redesigns NASA SLS Exploration Upper Stage. NASASpaceFlight.com. 2019-12-18 [2020-07-25]. (原始内容存档于2020-08-07). 
  110. ^ Jenkins, Dennis R. Space Shuttle: Developing an Icon – 1972 –2013. Specialty Press. 2016. ISBN 978-1-58007-249-6. 
  111. ^ Berger, Eric. NASA chooses not to tell Congress how much deep space missions cost. arstechnica.com. 2017-10-20 [2018-12-16]. (原始内容存档于2018-12-17). 
  112. ^ 112.0 112.1 Origins Space Telescope Mission Concept Study Report (PDF): ES-11. 2019-10-11 [2020-05-14]. (原始内容存档 (PDF)于2020-07-12). The launch cost (US$500 million for the SLS launch vehicle, as advised by NASA Headquarters) is also included.    本文含有此来源中属于公有领域的内容。
  113. ^ 113.0 113.1 Habitable Exoplanet Observatory Final Report (PDF). Jet Propulsion Laboratory. 2019-08-25 [2020-05-11]. (原始内容存档 (PDF)于2019-12-11).  Section 9-11 9.4.1 Basis of estimate, page 281
  114. ^ MANAGEMENT OF NASA'S EUROPA MISSION (PDF). oig.nasa.gov. 2019-05-29 [2019-11-08]. (原始内容存档 (PDF)于2019-06-26).    本文含有此来源中属于公有领域的内容。
  115. ^ Foust, Jeff. Inspector general report warns of cost and schedule problems for Europa Clipper. SpaceNews. 2019-05-29 [2021-01-20]. (原始内容存档于2021-09-30). 
  116. ^ Follow-up to May 2019 Audit of Europa Mission – Congressional Launch Vehicle Mandate (PDF). oig.nasa.gov. 2019-08-27 [2021-01-20]. (原始内容存档 (PDF)于2020-11-08).    本文含有此来源中属于公有领域的内容。
  117. ^ Foust, Jeff. NASA inspector general asks Congress for Europa Clipper launch flexibility. SpaceNews. 2019-08-28 [2021-01-20]. (原始内容存档于2021-09-30). 
  118. ^ Vought, Russell T. Letter to the Chair and Vice Chair of the Senate Appropriations Committee with respect to 10 of the FY 2020 annual appropriations bills (PDF). whitehouse.gov: 7. [2019-11-13]. (原始内容存档 (PDF)于2019-11-13). estimated cost of over US$2 billion per launch for the SLS once development is complete    本文含有此来源中属于公有领域的内容。
  119. ^ NASA FY2021 budget estimates (PDF). NASA. [2020-09-14]. (原始内容存档 (PDF)于2020-07-27).    本文含有此来源中属于公有领域的内容。
  120. ^ Town Hall with Administrator Bridenstine and NASA's New HEO Associate Administrator Douglas Loverro (YouTube). NASA. 事件发生在 24:58. 2019-12-03 [2021-01-20]. (原始内容存档于2021-10-31). "I do not agree with the US$2 billion number, it is far less than that. I would also say that the number comes way down when you buy more than one or two. And so I think at the end we're going to be, you know, in the US$800 million to US$900 million range – I don't know, honestly. We've recently just begun negotiations on what number three through whatever – we don't have to buy any quite frankly, but we intend to. But we're looking at what we could negotiate to get the best price for the American taxpayper, which is my obligation as the head of NASA".    本文含有此来源中属于公有领域的内容。
  121. ^ Potter, Sean. NASA Awards Launch Services Contract for the Europa Clipper Mission (新闻稿). NASA. 2021-07-23 [2021-07-23]. (原始内容存档于2021-07-24).    本文含有此来源中属于公有领域的内容。
  122. ^ SpaceX to launch the Europa Clipper mission for a bargain price. Ars Technica. 2021-07-23 [2021-08-12]. (原始内容存档于2021-08-13). 
  123. ^ Falcon Heavy to launch Europa Clipper. SpaceNews. 2021-07-24 [2021-10-13]. 
  124. ^ Supply chain, Artemis program limit SLS use for science missions. SpaceNews. 2021-07-08 [2021-10-13]. 
  125. ^ NASA'S MANAGEMENT OF THE ARTEMIS MISSIONS (PDF). Office of Inspector General (United States). NASA: numbered page 23, PDF page 29. 2021-11-15 [2021-11-15]. (原始内容存档 (PDF)于2021-11-15). SLS/Orion Production and Operating Costs Will Average Over $4 Billion Per Launch [...] We project the cost to fly a single SLS/Orion system through at least Artemis IV to be $4.1 billion per launch at a cadence of approximately one mission per year. Building and launching one Orion capsule costs approximately $1 billion, with an additional $300 million for the Service Module supplied by the ESA [...] In addition, we estimate the single-use SLS will cost $2.2 billion to produce, including two rocket stages, two solid rocket boosters, four RS-25 engines, and two stage adapters. Ground systems located at Kennedy where the launches will take place—the Vehicle Assembly Building, Crawler-Transporter, Mobile Launcher 1, Launch Pad, and Launch Control Center—are estimated to cost $568 million per year due to the large support structure that must be maintained. The $4.1 billion total cost represents production of the rocket and the operations needed to launch the SLS/Orion system including materials, labor, facilities, and overhead, but does not include any money spent either on prior development of the system or for next-generation technologies such as the SLS’s Exploration Upper Stage, Orion’s docking system, or Mobile Launcher 2. [...] The cost per launch was calculated as follows: $1 billion for the Orion based on information provided by ESD officials and NASA OIG analysis; $300 million for the ESA’s Service Module based on the value of a barter agreement between ESA and the United States in which ESA provides the service modules in exchange for offsetting its ISS responsibilities; $2.2 billion for the SLS based on program budget submissions and analysis of contracts; and $568 million for EGS costs related to the SLS/Orion launch as provided by ESD officials.    本文含有此来源中属于公有领域的内容。
  126. ^ 126.0 126.1 NASA Announces Design For New Deep Space Exploration System. NASA. 2011-09-14 [2011-09-14]. (原始内容存档于2011-09-21).    本文含有此来源中属于公有领域的内容。
  127. ^ NASA Announces Key Decision For Next Deep Space Transportation System. NASA. 2011-05-24 [2012-01-26]. (原始内容存档于2016-09-15).    本文含有此来源中属于公有领域的内容。
  128. ^ Press Conference on the Future of NASA Space Program. C-Span. 2011-09-14 [2011-09-14]. (原始内容存档于2012-02-08). 
  129. ^ Kenneth Chang. NASA Unveils New Rocket Design. The New York Times. 2011-09-14 [2011-09-14]. (原始内容存档于2017-02-21). 
  130. ^ 130.0 130.1 130.2 130.3 130.4 130.5 Bergin, Chris. Advanced Boosters progress towards a solid future for SLS. NasaSpaceFlight.com. 2015-02-20 [2015-02-25]. (原始内容存档于2015-02-23). 
  131. ^ Frank Morring. NASA Will Compete Space Launch System Boosters. Aviation Week. 2011-06-17 [2011-06-20]. (原始内容存档于2011-10-11). 
  132. ^ SLS Block II drives hydrocarbon engine research. thespacereview.com. 2013-01-14 [2013-09-13]. (原始内容存档于2013-09-02). 
  133. ^ NASA's Space Launch System: Partnering For Tomorrow (PDF). NASA. [2013-03-12]. (原始内容存档 (PDF)于2015-04-02).    本文含有此来源中属于公有领域的内容。
  134. ^ The Dark Knights – ATK's Advanced Boosters for SLS revealed. NASASpaceFlight.com. 2013-01-14 [2013-09-10]. (原始内容存档于2013-09-12). 
  135. ^ Lee Hutchinson. New F-1B rocket engine upgrades Apollo-era design with 1.8M lbs of thrust. Ars Technica. 2013-04-15 [2013-04-15]. (原始内容存档于2017-12-02). 
  136. ^ Second SLS Mission Might Not Carry Crew. SpaceNews. 2014-05-21 [2014-07-25]. (原始内容存档于2014-07-27). 
  137. ^ Wind Tunnel testing conducted on SLS configurations, including Block 1B. NASASpaceFlight.com. July 2012 [2012-11-13]. (原始内容存档于2012-10-24). 
  138. ^ NASA's Space Launch System Program PDR: Answers to the Acronym. NASA. 2013-08-01 [2013-08-03]. (原始内容存档于2013-08-04).    本文含有此来源中属于公有领域的内容。
  139. ^ NASA Completes Key Review of World's Most Powerful Rocket in Support. NASA. 2015-04-15 [2015-10-26]. (原始内容存档于2016-05-27).    本文含有此来源中属于公有领域的内容。
  140. ^ Gebhardt, Chris. SLS upper stage proposals reveal increasing payload-to-destination options. NASASpaceFlight.com. 2013-11-13 [2013-11-18]. (原始内容存档于2013-11-18). 
  141. ^ Todd, David. SLS design may ditch J-2X upper stage engine for four RL-10 engines. Seradata. 2013-06-03. (原始内容存档于2016-03-04). 
  142. ^ Todd, David. Next Steps for SLS: Europe's Vinci is a contender for Exploration Upper-Stage Engine. Seradata. 2014-11-07. (原始内容存档于2016-03-04). 
  143. ^ Berger, Eric. NASA rejects Blue Origin's offer of a cheaper upper stage for the SLS rocket. Ars Technica. 2019-11-05 [2019-12-19]. (原始内容存档于2019-12-19). 
  144. ^ Redacted_EUS.pdf. sam.gov. 2019-10-31 [2021-10-06]. (原始内容存档 (PDF)于2021-10-05). 
  145. ^ NASA and ATK Successfully Test Ares First Stage Motor. NASA. 2009-09-10 [2012-01-30]. (原始内容存档于2018-12-24).    本文含有此来源中属于公有领域的内容。
  146. ^ NASA and ATK Successfully Test Five-Segment Solid Rocket Motor. NASA. 2010-08-31 [2012-01-30]. (原始内容存档于2011-12-19).    本文含有此来源中属于公有领域的内容。
  147. ^ NASA Successfully Tests Five-Segment Solid Rocket Motor. NASA. 2010-08-31 [2011-09-08]. (原始内容存档于2011-09-24).    本文含有此来源中属于公有领域的内容。
  148. ^ Bergin, Chris. QM-1 shakes Utah with two minutes of thunder. NASASpaceFlight.com. 2015-03-10 [2015-03-10]. (原始内容存档于2015-03-13). 
  149. ^ Orbital ATK Successfully Tests the World's Largest Solid Rocket Motor. Northrop Grumman. 2016-06-28 [2021-10-11]. (原始内容存档于2021-06-15). 
  150. ^ The NASA Authorization Act of 2010. Featured Legislation. U.S. Senate. 2010-07-15 [2011-05-26]. (原始内容存档于2011-04-10).    本文含有此来源中属于公有领域的内容。
  151. ^ Tate, Karl. Space Launch System: NASA's Giant Rocket Explained. Space.com. 2011-09-16 [2012-01-26]. (原始内容存档于2012-01-27). 
  152. ^ SLS Upper Stage set to take up residence in the former home of ISS modules July 2017. 2017-07-11 [2020-02-15]. (原始内容存档于2020-08-07). 
  153. ^ Harbaugh, Jennifer. Meet the Interim Cryogenic Propulsion Stage for SLS. NASA. 2018-11-08. (原始内容存档于2020-08-07).    本文含有此来源中属于公有领域的内容。
  154. ^ SLS Engine Section Barrel Hot off the Vertical Weld Center at Michoud. NASA. [2014-11-16]. (原始内容存档于2014-11-19).    本文含有此来源中属于公有领域的内容。
  155. ^ NASA's Space Launch System Core Stage Passes Major Milestone, Ready to Start Construction. Space Travel. 2012-12-27 [2012-12-27]. (原始内容存档于2019-12-21). 
  156. ^ All Four Engines Are Attached to the SLS Core Stage for Artemis I Mission. NASA. 2019-11-08 [2019-11-12]. (原始内容存档于2019-11-12).    本文含有此来源中属于公有领域的内容。
  157. ^ Clark, Stephen. NASA declares first SLS core stage complete. Spaceflight Now. 2019-12-15 [2021-10-07]. (原始内容存档于2022-05-11). 
  158. ^ Rincon, Paul. Nasa Moon rocket core leaves for testing. BBC News. 2020-01-09 [2020-01-09]. (原始内容存档于2020-01-09). 
  159. ^ Boeing, NASA getting ready for SLS Core Stage Green Run campaign ahead of Stennis arrival. NASASpaceFlight.com. 2019-12-14 [2020-01-09]. (原始内容存档于2021-09-30). 
  160. ^ NASA Will Have 8 Minute Hold Down Test in 2020. Next Big Future. [2019-08-02]. (原始内容存档于2019-08-02). 
  161. ^ Foust, Jeff. Green Run hotfire test ends early. SpaceNews. 2021-01-16 [2021-01-17]. (原始内容存档于2021-10-03). 
  162. ^ Rincon, Paul. SLS: NASA finds cause of 'megarocket' test shutdown. BBC News. 2021-01-20 [2021-01-20]. (原始内容存档于2021-01-20). 
  163. ^ Dunbar, Brian. Space Launch System Core Stage Arrives at the Kennedy Space Center. NASA. 2021-04-29 [2021-06-01]. (原始内容存档于2021-05-07).    本文含有此来源中属于公有领域的内容。
  164. ^ Sloss, Philip. SLS Core Stage thermal protection system refurbishment in work at Kennedy for Artemis 1. NASASpaceFlight.com. 2021-05-20 [2021-05-26]. (原始内容存档于2021-05-26). 
  165. ^ 165.0 165.1 Sloss, Philip. EGS, Jacobs completing first round of Artemis 1 pre-launch integrated tests prior to Orion stacking. NASASpaceFlight. 2021-09-29 [2021-09-29]. (原始内容存档于2021-09-29). 
  166. ^ 166.0 166.1 166.2 166.3 166.4 166.5 Sloss, Philip. Boeing working on multiple Cores, first EUS hardware for Artemis missions 2–4. NASASpaceFlight.com. 2021-07-19 [2021-10-11]. (原始内容存档于2021-08-12). 
  167. ^ Shields up! Spray foam evolving to protect NASA SLS. Boeing. 2021-07-14 [2021-10-11]. (原始内容存档于2021-08-15). 
  168. ^ Sloss, Philip. Boeing aiming to deliver second SLS Core Stage to NASA in March. NASASpaceFlight.com. 2022-07-25 [2022-07-30]. (原始内容存档于2022-08-31) (美国英语). 
  169. ^ 169.0 169.1 SLS Monthly Highlights February 2020 (PDF). NASA. February 2020 [2021-10-11]. (原始内容存档 (PDF)于2021-10-11).    本文含有此来源中属于公有领域的内容。
  170. ^ Davis, Jason. To Mars, with a monster rocket: How politicians and engineers created NASA's Space Launch System. The Planetary Society. 2016-10-03 [2020-09-14]. (原始内容存档于2020-09-25). 
  171. ^ 171.0 171.1 171.2 171.3 Davis, Jason. The anatomy of a delay: Here's a timeline of twists and turns for NASA's SLS and Orion programs. The Planetary Society. 2017-05-17 [2022-03-18]. (原始内容存档于2020-08-07). 
  172. ^ Harwood, William. NASA unveils new super rocket for manned flights beyond Earth orbit. CBS News. 2011-09-14 [2020-09-14]. (原始内容存档于2020-08-10). 
  173. ^ NASA's Giant Rocket for Deep-Space Travel Passes Key Review. Space.com. 2012-07-26 [2022-03-18]. (原始内容存档于2021-05-13). 
  174. ^ Foust, Jeff. NASA Says SLS and Orion Will Slip to 2018 Despite Extra Funding. SpaceNews. 2014-12-10. 
  175. ^ Foust, Jeff. NASA inspector general foresees additional SLS/Orion delays. SpaceNews. 2017-04-13 [2020-09-14]. (原始内容存档于2021-10-03). 
  176. ^ Clark, Stephen. NASA confirms first flight of Space Launch System will slip to 2019. Spaceflight Now. 2017-04-28 [2017-04-29]. (原始内容存档于2017-12-26). 
  177. ^ Clark, Stephen. NASA expects first Space Launch System flight to slip into 2020. Spaceflight Now. 2017-11-20 [2018-05-24]. (原始内容存档于2018-08-09). 
  178. ^ Patel, Neel. The seven most exciting space missions of 2020. MIT Technology Review. 2019-12-31 [2022-03-18]. (原始内容存档于2020-08-08). 
  179. ^ 179.0 179.1 Gebhardt, Chris. SLS debut slips to April 2021, KSC teams working through launch sims. NASASpaceFlight.com. 2020-02-21 [2020-02-21]. (原始内容存档于2020-08-06). 
  180. ^ Foust, Jeff. First SLS launch now expected in second half of 2021. SpaceNews. 2020-03-02 [2022-08-18]. (原始内容存档于2023-09-09). 
  181. ^ Clark, Stephen. Hopeful for launch next year, NASA aims to resume SLS operations within weeks. 2020-05-01 [2020-05-03]. (原始内容存档于2020-09-13). 
  182. ^ 182.0 182.1 SMSR Integrated Master Schedule (PDF). Office of Safety and Mission Assurance. NASA. 2021-06-07 [2021-06-09]. (原始内容 (PDF)存档于2021-06-14). 
  183. ^ Clark, Stephen. NASA's hopes waning for SLS test flight this year. Spaceflight Now. 2021-08-31 [2021-09-01]. (原始内容存档于2021-09-01). 
  184. ^ Berger, Eric. NASA's big rocket misses another deadline, now won't fly until 2022. Ars Technica. 2021-08-31 [2021-09-01]. (原始内容存档于2021-09-01). 
  185. ^ Clark, Steven. NASA targets February launch for Artemis 1 moon mission. Spaceflight Now. 2021-10-22 [2022-03-18]. (原始内容存档于2022-01-13). 
  186. ^ Sloss, Philip. Artemis 1 Orion joins SLS to complete vehicle stack. NASASpaceFlight. 2021-10-21 [2021-10-22]. (原始内容存档于2021-12-30). 
  187. ^ Artemis I Integrated Testing Update. NASA. 2021-12-17 [2021-12-18]. (原始内容存档于2022-12-11). 
  188. ^ Wall, Mike. NASA's Artemis 1 moon mission, 1st flight of new megarocket, won't launch until May. Space.com. 2022-02-24 [2022-02-25]. (原始内容存档于2022-03-18). 
  189. ^ Barker, Nathan; Gebhardt, Chris. NASA moon rocket SLS rolls out to "rebuilt" LC-39B ahead of Artemis 1 rehearsal. NASASpaceFlight. 2022-03-17 [2022-03-18]. (原始内容存档于2022-03-17). 
  190. ^ Clark, Stephen. NASA's moon rocket rolls back to Vehicle Assembly Building for repairs. Spaceflight Now. 2022-04-26 [2022-04-26]. (原始内容存档于2022-04-26). 
  191. ^ Clark, Stephen. NASA not planning another Artemis 1 countdown dress rehearsal. Spaceflightnow. 2022-06-22 [2022-06-24]. (原始内容存档于2022-06-23). 
  192. ^ 192.0 192.1 The SLS rocket finally has a believable launch date, and it's soon. Ars Technica. 2022-07-20 [2022-07-20]. (原始内容存档于2022-07-20). 
  193. ^ Sloss, Philip. New Artemis 1 schedule uncertainty as NASA EGS ready to continue SLS Booster stacking. nasaspaceflight. 2020-12-04 [2021-09-28]. (原始内容存档于2021-09-28). 
  194. ^ Clark, Stephen. Stacking complete for SLS boosters. spaceflightnow.com. 2021-03-09 [2021-09-28]. (原始内容存档于2021-06-03). 
  195. ^ Stephen, Clark. NASA proceeds with SLS booster stacking in Florida before core stage arrives. Spaceflight Now. 2021-01-15 [2021-09-28]. (原始内容存档于2021-03-07). 
  196. ^ Foust, Jeff. First Crewed Orion Mission May Slip to 2023. SpaceNews. 2015-09-16 [2016-06-23]. (原始内容存档于2021-09-30). 
  197. ^ Clark, Stephen. Orion spacecraft may not fly with astronauts until 2023. Spaceflight Now. 2015-09-16 [2016-06-23]. (原始内容存档于2016-07-01). 
  198. ^ Clark, Smith. Mikulski "Deeply Troubled" by NASA's Budget Request; SLS Won't Use 70 Percent JCL. spacepolicyonline.com. 2014-05-01 [2016-06-23]. (原始内容存档于2016-08-05). 
  199. ^ Report No. IG-20-018: NASA's Management of the Orion Multi-Purpose Crew Vehicle Program (PDF). Office of Inspector General (United States). NASA. 2020-07-16 [2020-07-17]. (原始内容存档 (PDF)于2020-07-19).    本文含有此来源中属于公有领域的内容。
  200. ^ Foust, Jeff. NASA delays human lunar landing to at least 2025. SpaceNews. 2021-11-09 [2021-11-09]. (原始内容存档于2022-09-01). 
  201. ^ Carter, Jamie. The $3.4 Billion Plan For NASA To Explore 'Pluto's Twin' And The Rings Of Neptune Then Execute A 'Death Dive'. Forbes. 2021-09-27 [2021-10-13]. (原始内容存档于2021-10-05). 
  202. ^ Rymer, Abigail M.; et al. Neptune Odyssey: A Flagship Concept for the Exploration of the Neptune–Triton System. The Planetary Science Journal. 2021-09-08, 2 (5): 184 [2021-10-13]. Bibcode:2021PSJ.....2..184R. S2CID 237449259. doi:10.3847/PSJ/abf654. (原始内容存档于2021-10-08). 
  203. ^ Foust, Jeff. Europa lander work continues despite budget uncertainty. SpaceNews. 2017-03-31 [2017-03-31]. 
  204. ^ Foust, Jeff. Final fiscal year 2019 budget bill secures US$21.5 billion for NASA. SpaceNews. 2019-02-17. 
  205. ^ Europa Lander Mission Concept Overview页面存档备份,存于互联网档案馆) Grace Tan-Wang, Steve Sell, Jet Propulsion Laboratory, NASA, AbSciCon2019, Bellevue, Washington. 26 June 2019   本文含有此来源中属于公有领域的内容。
  206. ^ Clark, Stephen. Five years after New Horizons flyby, scientists assess next mission to Pluto. Spaceflightnow. 2020-07-14 [2021-10-13]. (原始内容存档于2021-10-06). 
  207. ^ Siegel, Ethan. New Space Telescope, 40 Times The Power Of Hubble, To Unlock Astronomy's Future. Forbes. 2017-09-19 [2021-10-13]. (原始内容存档于2021-07-05). 
  208. ^ Lynx X-Ray Observatory (PDF). NASA. [2021-10-13]. (原始内容存档 (PDF)于2021-04-16). 
  209. ^ Billings, Lee. Proposed Interstellar Mission Reaches for the Stars, One Generation at a Time. Scientific American. 2019-11-12 [2021-10-13]. (原始内容存档于2021-07-25). 
  210. ^ NASA測試新太空發射系統引擎現故障 或延美太空人重返月球計劃 (17:55). [2021-01-17]. (原始内容存档于2021-02-09). 
  211. ^ https://twitter.com/NASA/status/1590116388403785729页面存档备份,存于互联网档案馆) SLS Launch delayed to 16th Nov
  212. ^ https://twitter.com/NASA_SLS/status/1592773054312038400页面存档备份,存于互联网档案馆) SLS-1 Launch
  213. ^ https://twitter.com/NASA_Orion/status/1592803012245917697页面存档备份,存于互联网档案馆) Orion seperated from ICPS
  214. ^ Bergin, Chris. Preliminary NASA Plan Shows Evolved SLS Vehicle 21 Years Away. nasaspaceflight.com. 2011-07-27 [2011-07-28]. (原始内容存档于2011-08-12). 
  215. ^ 215.0 215.1 Ferris Valyn. Monster Rocket Will Eat America's Space Program. Space Frontier Foundation. 2011-09-15 [2011-09-16]. (原始内容存档于2011-10-06). 
  216. ^ Congressman, Space Frontier Foundation, And Tea Party In Space Call For NASA SLS Investigation. moonandback.com. 2011-10-04 [2011-10-20]. (原始内容存档于2011-10-03). 
  217. ^ 217.0 217.1 217.2 The Senate Launch System. Competitive Space Task Force. 2011-10-04 [2011-10-20]. (原始内容存档于2011-10-27). 
  218. ^ 218.0 218.1 218.2 Henry Vanderbilt. Impossibly High NASA Development Costs Are Heart of the Matter. moonandback.com. 2011-09-15 [2012-01-26]. (原始内容存档于2012-03-31). 
  219. ^ 219.0 219.1 Rick Tumlinson. The Senate Launch System – Destiny, Decision, and Disaster. Huffington Post. 2011-09-15 [2014-09-09]. (原始内容存档于2014-09-10).  参数|newspaper=与模板{{cite web}}不匹配(建议改用{{cite news}}|website=) (帮助)
  220. ^ Davenport, Christian. As private companies erode government's hold on space travel, NASA looks to open a new frontier. Washington Post. 2021-02-25 [2021-02-26]. (原始内容存档于2021-10-03). 
  221. ^ Garver: NASA Should Cancel SLS and Mars 2020 Rover. Space News. January 2014 [2015-08-25]. (原始内容存档于2021-10-03). 
  222. ^ Why NASA Still Can't Put Humans in Space: Congress Is Starving It of Needed Funds. 2015 [2015-08-25]. (原始内容存档于2015-08-24). 
  223. ^ New Report Finds Nasa Awarded Boeing Large Fees Despite SLS Launch Slips. ArsTechnica. 2019-06-19 [2019-08-01]. (原始内容存档于2019-08-14). 
  224. ^ Space News: Contractors continue to win award fees despite SLS and Orion delays. Space News. 2019-06-19 [2019-08-01]. (原始内容存档于2021-10-03). 
  225. ^ 225.0 225.1 225.2 225.3 NASA'S MANAGEMENT OF SPACE LAUNCH SYSTEM PROGRAM COSTS AND CONTRACTS (PDF). NASA – Office of Inspector General – Office of Audits. 2020-03-10 [2020-09-14]. (原始内容存档 (PDF)于2020-08-28). Based on our review of SLS Program cost reporting, we found that the Program exceeded its Agency Baseline Commitment (ABC) by at least 33 percent at the end of FY 2019, a figure that could reach 43 percent or higher if additional delays push the launch date for Artemis I beyond November 2020. This is due to cost increases tied to Artemis I and a December 2017 replan that removed almost $1 billion of costs from the ABC without lowering the baseline, thereby masking the impact of Artemis I’s projected 19-month schedule delay from November 2018 to a June 2020 launch date. Since the replan, the SLS Program now projects the Artemis I launch will be delayed to at least spring 2021 or later. Further, we found NASA’s ABC cost reporting only tracks Artemis I-related activities and not additional expenditures of almost $6 billion through FY 2020 that are not being reported or tracked through the official congressional cost commitment or the ABC. [...] as a result of delaying Artemis I up to 19 months to June 2020, NASA conducted a replan of the SLS Program in 2017 and removed $889 million in Booster and RS-25 Engine-related development costs because SLS Program officials determined those activities were not directly tied to Artemis I. [...] In our judgement, the removal of these costs should have reduced the SLS Program’s ABC development costs from $7.02 billion to $6.13 billion. [...] SLS Program and HEOMD officials disagreed with our assessment and stated the SLS Program’s change in cost estimates for the Booster and Engines element offices were not a removal of costs but rather a reallocation of those activities to appropriately account for them as non-Artemis I costs. [...] Federal law requires that any time Agency program managers have reasonable knowledge that development costs are likely to exceed the ABC by more than 30 percent, they must notify the NASA Administrator. Once the Administrator determines the SLS Program will exceed the development cost baseline by 30 percent or more, NASA is required to notify Congress and rebaseline program costs and schedule commitments. If the Administrator notifies Congress of the need to rebaseline, NASA is required to stop funding program activities within 18 months unless Congress provides approval and additional appropriations. In our judgement, using NASA’s cost estimates from October 2019 and accounting for the removed costs from the replan, the SLS Program was required to rebaseline when the program exceeded its ABC by 33 percent at the end of FY 2019, an increase that could reach 43 percent or higher by the Artemis I launch date.    本文含有此来源中属于公有领域的内容。
  226. ^ NASA HUMAN SPACE EXPLORATION: Persistent Delays and Cost Growth Reinforce Concerns over Management of Programs (PDF). GAO. [2020-09-15]. (原始内容存档 (PDF)于2021-10-03). NASA’s current approach for reporting cost growth misrepresents the cost performance of the program and thus undermines the usefulness of a baseline as an oversight tool. NASA’s space flight program and project management requirements state that the agency baseline commitment for a program is the basis for the agency’s commitment to the Office of Management and Budget (OMB) and the Congress based on program requirements, cost, schedule, technical content, and an agreed-to joint cost and schedule confidence level. Removing effort that amounts to more than a tenth of a program’s development cost baseline is a change in the commitment to OMB and the Congress and results in a baseline that does not reflect actual effort. [...] Further, the baseline is a key tool against which to measure the cost and schedule performance of a program. A program must be rebaselined and reauthorized by the Congress if the Administrator determines that development costs will increase by more than 30 percent. Accounting for shifted costs, our analysis indicates that NASA has reached 29.0 percent development cost growth for the SLS program. [...] In addition, as we previously reported in May 2014, NASA does not have a cost and schedule baseline for SLS beyond the first flight. As a result, NASA cannot monitor or track costs shifted beyond EM-1 against a baseline. We recommended that NASA establish cost and schedule baselines that address the life cycle of each SLS increment, as well as for any evolved Orion or ground systems capability. NASA partially concurred with the recommendation, but has not taken any action to date. [...] By not adjusting the SLS baseline to account for the reduced scope, NASA will continue to report costs against an inflated baseline, hence underreporting the extent of cost growth. NASA’s Associate Administrator and Chief Financial Officer stated that they understood our rationale for removing these costs from the EM-1 baseline and agreed that not doing so could result in underreporting of cost growth. Further, the Associate Administrator told us that the agency will be relooking at the SLS program’s schedule, baseline, and calculation of cost growth.    本文含有此来源中属于公有领域的内容。
  227. ^ 227.0 227.1 NASA Commits to Future Artemis Missions with More SLS Rocket Engines (新闻稿). NASA. 2020-05-01 [2020-05-04]. (原始内容存档于2020-05-01).    本文含有此来源中属于公有领域的内容。
  228. ^ Berger, Eric. NASA will pay a staggering 146 million for each SLS rocket engine. Ars Technica. 2020-05-01 [2020-05-04]. (原始内容存档于2020-05-04). 
  229. ^ Bolden talks expectations for Biden's space policy. Politico. 2020 [2020-09-11]. (原始内容存档于2020-09-11). 
  230. ^ Review of U.S. Human Space Flight Plans Committee; Augustine, Austin; Chyba, Kennel; Bejmuk, Crawley; Lyles, Chiao; Greason, Ride. Seeking A Human Spaceflight Program Worthy of A Great Nation (PDF). NASA. October 2009 [2010-04-15]. (原始内容存档 (PDF)于2019-02-16).    本文含有此来源中属于公有领域的内容。
  231. ^ Statement before the Committee on Science, Space, and Technology US House of Representatives Hearing: A Review of the NASA's Space Launch System (PDF). The Planetary Society. 2011-07-12 [2012-01-26]. (原始内容 (PDF)存档于2012-03-29). 
  232. ^ Rohrabacher, Dana. Nothing New or Innovative, Including It's(原文如此) Astronomical Price Tag. 2011-09-14 [2011-09-14]. (原始内容存档于2011-09-24).    本文含有此来源中属于公有领域的内容。
  233. ^ Rohrabacher calls for "emergency" funding for CCDev. parabolicarc.com. 2011-08-24 [2011-09-15]. (原始内容存档于2014-11-26). 
  234. ^ Jeff Foust. A monster rocket, or just a monster?. The Space Review. 2011-09-15 [2011-10-20]. (原始内容存档于2011-10-17). 
  235. ^ Jeff Foust. Can NASA develop a heavy-lift rocket?. The Space Review. 2011-11-01 [2011-10-20]. (原始内容存档于2011-10-15). 
  236. ^ Mohney, Doug. Did NASA Hide In-space Fuel Depots To Get a Heavy Lift Rocket?. Satellite Spotlight. 2011-10-21 [2011-11-10]. (原始内容存档于2016-03-03). 
  237. ^ Propellant Depot Requirements Study (PDF). HAT Technical Interchange Meeting. 2011-07-21 [2012-05-25]. (原始内容存档 (PDF)于2021-10-01). 
  238. ^ Cowing, Keith. Internal NASA Studies Show Cheaper and Faster Alternatives to the Space Launch System. SpaceRef. 2011-10-12 [2011-11-10]. (原始内容存档于2021-10-03). 
  239. ^ Near Term Space Exploration with Commercial Launch Vehicles Plus Propellant Depot (PDF). Georgia Institute of Technology / National Institute of Aerospace. 2010-09-02 [2012-03-07]. (原始内容存档 (PDF)于2016-02-04). 
  240. ^ Affordable Exploration Architecture (PDF). United Launch Alliance. 2009. (原始内容 (PDF)存档于2012-10-21). 
  241. ^ Grant Bonin. Human spaceflight for less: the case for smaller launch vehicles, revisited. The Space Review. 2011-06-06 [2011-09-20]. (原始内容存档于2012-11-23). 
  242. ^ Robert Zubrin. How We Can Fly to Mars in This Decade — And on the Cheap. Mars Society. 2011-05-14. (原始内容存档于2012-03-19). 
  243. ^ Andrew Gasser. Propellant depots: the fiscally responsible and feasible alternative to SLS. The Space Review. 2011-10-24 [2011-10-31]. (原始内容存档于2011-10-27). 
  244. ^ Berger, Eric. The SLS rocket may have curbed development of on-orbit refueling for a decade. 2019-08-01 [2019-08-05]. (原始内容存档于2019-08-05). 
  245. ^ Boyle, Alan. Is the case for Mars facing a crisis?. MSNBC. 2011-12-07. (原始内容存档于2012-01-07). 
  246. ^ Strickland, John K. Jr. The SpaceX Falcon Heavy Booster: Why Is It Important?. National Space Society. [2012-01-04]. (原始内容存档于2015-07-08). 
  247. ^ NASA Studies Scaled-Up Falcon, Merlin. Aviation Week. 2010-12-02. (原始内容存档于2012-07-27). 
引用错误:在<references>标签中name属性为“gsd-pdr-2016”的参考文献没有在文中使用

外部链接

编辑