轨道发射系统比较

維基媒體列表條目

轨道发射系统的比较(英语:Comparison of orbital launch systems)包含两个常规轨道发射系统列表(各个火箭配置),按运行状态分开。有关所有常规发射器系列的简单列表,请参阅:轨道发射器系列的比较。有关主要使用固体燃料的轨道发射系统的列表,请参见:比较固体燃料的轨道发射系统。

航天器推进是用于加速航天器和人造卫星的任何方法。常规固体火箭或常规固体燃料火箭是一种带有使用固体推进剂(燃料/氧化剂)的电动机的火箭。[注2]轨道发射系统是能够将有效载荷置于地球轨道内或轨道外的火箭和其他系统。当前所有航天器都使用常规化学火箭(双推进剂或固体燃料)进行发射,尽管有些[注3]在其第一阶段就使用了呼吸发动机。

当前与开发中的火箭

编辑

轨道说明:

发射系统状态说明
  发展中
  运作中
载具 国家/地区 制造商 载荷(kg) 轨道发射(含失败)[a] 日期
LEO GTO 其他 首次[b] 近次
Alpha   美国  乌克兰 萤火虫太空 1,000[1] 630 to SSO 0 2020[2]
安加拉 1.2   俄罗斯 赫鲁尼切夫国家航天科研生产中心 3,500[3] 2,400 to SSO 0 2020[4][c]
安加拉 A5   俄罗斯 赫鲁尼切夫国家航天科研生产中心 24,000[3] 7,500 with KVTK
5,400 with Briz-M [3]
1 2014 2014
安塔瑞斯 230 / 230+   美国 诺斯洛普·格拉曼 8,200[6] 3,000 to SSO[d] 6[7] 2016 2020
亚利安5号 ECA   欧洲 EADS阿斯特里姆 21,000[8] 10,865[9][e] 73[11] 2002 2019
亚利安6号 A62   欧洲 ArianeGroup 10,350[12]:45 5,000[12]:33 6,450 to SSO
3,000 to HEO
3,000 to TLI [12]:40–49
0 2021[13]
亚利安6号 A64   欧洲 ArianeGroup 21,650[12]:46 11,500+ [12]:33 14,900 to SSO
5,000 to GEO
8,400 to HEO
8,500 to TLI [12]:40–49
0 2021–2022[14]
Astra   美国 Astra Space 100[15] 0 2020[15]
擎天神5号 401   美国 联合发射同盟 9,050[16] 4,950 6,670 to SSO 38[16] 2002 2018
擎天神5号 411   美国 联合发射同盟 9,050[16] 6,075 8,495 to SSO 5[16] 2006 2018
擎天神5号 421   美国 联合发射同盟 9,050[16] 7,000 9,050 to SSO 7[16] 2007 2017
擎天神5号 431   美国 联合发射同盟 9,050[16] 7,800 9,050 to SSO 3[16] 2005 2016
擎天神5号 501   美国 联合发射同盟 8,250[16] 3,970 5,945 to SSO
1,500 to GEO
6[16] 2010 2020
擎天神5号 521   美国 联合发射同盟 13,300[16] 6,485 9,585 to SSO
2,760 to GEO
2[16] 2003 2004
擎天神5号 531   美国 联合发射同盟 15,300[16] 7,425 11,160 to SSO
3,250 to GEO
3[16] 2010 2013
擎天神5号 541   美国 联合发射同盟 17,100[16] 8,240 12,435 to SSO
3,730 to GEO
6[16] 2011 2018
擎天神5号 551   美国 联合发射同盟 18,500[16] 8,700 13,550 to SSO
3,960 to GEO
10[16] 2006 2019
擎天神5号N22[f]   美国 联合发射同盟 13,000 1 2019[18]
Beta   美国  乌克兰 萤火虫太空 4,000[19] TBA 3,000 to SSO 0 TBA
Bloostar   西班牙 Zero 2 Infinity 140[20] 75 to SSO[20] 0 TBA
Blue Whale 1   韩国 Perigee Aerospace 63[21] 50 to SSO 0 2021[22]
谷神星一号   中国大陆 星河动力 350 270 to SSO 0 2020[23]
Cyclone-4M   乌克兰 Yuzhnoye
Yuzhmash
5,000[24] 1,000[25] 3,350 to SSO[24] 0 2021[26]
Delta IV Heavy   美国 联合发射同盟 28,790[27] 14,220 23,560 to polar
11,290 to TLI
8,000 to TMI
11[28] 2004 2019
Electron   美国
  新西兰
火箭实验室 300[29] 200 to SSO[29] 12[30] 2017 2020
艾普斯龙   日本 IHI[31] 1,500[32] 590 to SSO 4[33] 2013 2019
Eris-S   澳大利亚
  新加坡
Gilmour Space Technologies 200[34] 0 2021–2022[35]
Eris-L   澳大利亚
  新加坡
Gilmour Space Technologies 450[34] 0 TBA
猎鹰九号FT
(部分可重复使用)
  美国 SpaceX 16,800+[36][g] 5,500[37][h] 9,600 to polar[38] 351[39][40][i] 2015 2021
猎鹰九号FT
(expended)
  美国 SpaceX 22,800[37][g] 6,500[43]–8,300[37] 4,020 to TMI 16[44][45] 2017 2020
猎鹰重型
(部分可重复使用)[46]
  美国 SpaceX 30,000[47]–57,000[48] 8,000[37]–10,000[j] 11[49][50] 2018 2019
猎鹰重型
(expended)
  美国 SpaceX 63,800[37] 15,000[43]–26,700[37] 16,800 to TMI 0 [k]
GSLV Mk II   印度 印度太空研究组织 5,000[51] 2,700[52][l] 7[53] 2010 2018
GSLV Mk III   印度 印度太空研究组织 10,000[54] 4,000 4[55] 2017[m] 2019
H-IIA 202   日本 三菱重工业 8,000[57]:67 4,000[57]:48 5,100 to SSO[n]
[57]:64–65
26[58] 2001 2020
H-IIA 204   日本 三菱重工业 5,950[57]:48 4[58] 2006 2017
H3   日本 三菱重工业 4,000[59] 6,500[60] 4,000 to SSO[61] 0 2020[61][62]
双曲线一号   中国大陆 星际荣耀 300[63] 1[64] 2019[65][o] 2019
双曲线二号   中国大陆 星际荣耀 2,000[63] 0 2021[63]
捷龙一号[66]   中国大陆 中国运载火箭技术研究院 200 (SSO) 1[66] 2019 2019
开拓二号   中国大陆 中国航天科技集团 800[67] 1[67] 2017 2017
快舟一号/快舟一号甲   中国大陆 航天科工火箭技术有限公司 400[68] 9[68] 2013[p] 2019
快舟十一号   中国大陆 航天科工火箭技术有限公司 1,500[69] 1,000 to SSO[70] 1 2020
快舟二十一号   中国大陆 航天科工火箭技术有限公司 20,000[71] 0 2025[70]
LauncherOne   美国 维珍轨道 500[72] 300 to SSO[73] 1 2020
长征二号丙   中国大陆 中国运载火箭技术研究院 3,850
[来源请求]
1,250 with CTS2 2,000 to SSO with YZ-1S[74] 57[75][q] 1982 2019
长征二号丁   中国大陆 上海航天技术研究院 4,000 1,150 to SSO 46[75] 1992 2020
长征二号F   中国大陆 中国运载火箭技术研究院 8,600 13[75] 1999 2016
长征三号甲   中国大陆 中国运载火箭技术研究院 6,000[76] 2,600 5,000 to SSO 27[77] 1994 2018
长征三号乙   中国大陆 中国运载火箭技术研究院 11,500[76] 5,500 6,900 to SSO 53[77] 2007 2020
长征三号丙   中国大陆 中国运载火箭技术研究院 9,100[76] 3,800 6,500 to SSO 17[77] 2008 2019
长征四号乙   中国大陆 上海航天技术研究院 4,200[78] 1,500 2,800 to SSO 35[78] 1999 2019
长征四号丙   中国大陆 上海航天技术研究院 4,200[79] 1,500 2,800 to SSO 28[78] 2006 2019
长征五号   中国大陆 中国运载火箭技术研究院 32,000[80] 14,400 9,400 to TLI[81]
6,000 to TMI[81] [82]
5 2016 2020
长征五号乙   中国大陆 中国运载火箭技术研究院 25,000[82] 1[82] 2020[83] 2020
长征六号   中国大陆 上海航天技术研究院 1,080 to SSO[84] 3[85] 2015 2019
长征七号   中国大陆 中国运载火箭技术研究院 14,000[86] 5,500 to SSO 2[87] 2016[88] 2017
长征七号甲   中国大陆 中国运载火箭技术研究院 5,500 to 7,000[83] 1 2020 2020
长征八号
(部分可重复使用)[89]
  中国大陆 中国运载火箭技术研究院 8,100[90] 2,800 5,000 to SSO 1 2020[89] 2020
长征九号[91]   中国大陆 中国运载火箭技术研究院 180,000[92] [93] 65,000 to TLI[92]
50,000 to TMI[89]
0 2028[94]–2030[89]
长征十一号   中国大陆 中国运载火箭技术研究院 700[95] 350 to SSO 8[96] 2015 2019
Minotaur I   美国 诺斯洛普·格拉曼 580[97] 10[98] 2000 2013
Minotaur IV   美国 诺斯洛普·格拉曼 1,735[99] 4[100] 2010 2017
米诺陶5号   美国 诺斯洛普·格拉曼 670[100] 465 to HCO 1[100] 2013 2013
米诺陶C型(金牛座)[101]   美国 诺斯洛普·格拉曼 1,458[102] 1,054 to SSO[r] 10[103] 1994 2017
Miura 5   西班牙 PLD Space 300[104] 0 2021[104]
新葛伦   美国 蓝色起源 45,000[105] 13,000 0 2021[106]
新航线一号
(部分可重复使用)[107]
  中国大陆 翎客航天 200 to SSO[107] 0 2020[107]
Nuri(KSLV-2   韩国 韩国航空宇宙研究院 1,500 at 600–800 km[108] 0 2021[108][s]
OmegA Intermediate   美国 诺斯洛普·格拉曼 22,000[109] 9,200[109] 3,200 to GEO[109] 0 2021[110]
OmegA Heavy   美国 诺斯洛普·格拉曼 23,200[109] 14,000[109] 6,700 to GEO[109] 0 2022[110]
OS-M1   中国大陆 零壹空间 205[111] 143 to SSO 1 2019[112][t] 2019
OS-M2   中国大陆 零壹空间 390[111] 292 to SSO 0 TBA
飞马座   美国 诺斯洛普·格拉曼 500[114] 44[114][115] 1990 2019
Prime   英国 Orbex 220[116] 150 to SSO[d][117] 0 2021[117]
质子M/M+   俄罗斯 赫鲁尼切夫国家航天科研生产中心 23,000 (M+)[118]
21,600 (M)[119]
6,920 (M+)
6,150 (M)
108[120][121][122] 2001 2019
PSLV-CA   印度 印度太空研究组织 2,100[123] 1,100 to SSO 14[123] 2007 2019
PSLV-DL   印度 印度太空研究组织 1[123] 2019 2019
PSLV-QL   印度 印度太空研究组织 2[123] 2019 2019
PSLV-XL   印度 印度太空研究组织 3,800[123] 1,300 1,750 to SSO
1,350 to TMI[124]
21[123] 2008 2019
Qased   伊朗 运营方:伊斯兰革命卫队 1 2020 2020
RS1   美国 ABL Space Systems 1,200[125] 400 875 to SSO 0 2020
信使   伊朗 伊朗航天局 65[126] 7[126][u] 2008 2019
沙维特   以色列 IAI 300[127] 10[128] 1988 2020
凤凰   伊朗 伊朗航天局 350[129] 2[129][v] 2017 2019
Soyuz-2.1a   俄罗斯 TsSKB-Progress 7,020 from Baikonur[130] 33[131][132][133] 2006[w] 2019
Soyuz-2.1b   俄罗斯 TsSKB-Progress 8,200 from Baikonur[130] 2,400[134] 32[132][135] 2006 2019
Soyuz ST-A   俄罗斯
  欧洲
TsSKB-Progress
Arianespace
7,800 from Kourou[136] 2,810 with Fregat[137] 6[132] 2011 2018
Soyuz ST-B   俄罗斯
  欧洲
TsSKB-Progress
Arianespace
9,000 from Kourou[138] 3,250 with Fregat[137] 4,400 to SSO[139] 16[132] 2011 2019
联合-1号   俄罗斯 TsSKB-Progress 2,800[140] 1,400 to SSO 5[140] 2013 2019
Soyuz-5 / Irtysh   俄罗斯 TsSKB-Progress
RSC Energia
18,000[141] 2,500 to GEO 0 2022[142][143]
SLS Block 1[x]   美国 NASA / 波音 (core)
诺斯洛普·格拉曼 (SRBs)
95,000[144] 26,000 to TLI[144] 0 2021[145]
SLS Block 1B[y]   美国 NASA / 波音
诺斯洛普·格拉曼
105,000[146] 37,000 to TLI[144] 0 2024[147]
SLS Block 2[z]   美国 NASA / 波音
诺斯洛普·格拉曼
130,000[148] 45,000 to HCO[144] 0 late 2020s (TBD)
SS-520   日本 IHI Aerospace 4[149] 2[150] 2017[151][aa] 2018
SSLV   印度 印度太空研究组织 500[152] 300 to SSO 0 2020[153]
星舰[154]
(Single launch)
  美国 SpaceX 100,000+[154][note 1] 21,000[155] 0 2020[156]
星舰[154]
(在轨加注)
  美国 SpaceX 100,000+[154][note 2] 100,000+
[154]
100,000+ to Mars surface[154]
100,000+ to lunar surface[154]
0 2023[156]
Terran 1   美国 Relativity Space 1,250[157] 900 to SSO 0 2021[158]
银河   朝鲜 朝鲜宇宙空间技术委员会 100[159] 4[160] 2009[ab] 2016
织女星   欧洲 ESA / ASI 1,500[ac][161] 1,330 to SSO[162] 15[163] 2012 2019
织女星C   欧洲 ESA / ASI 2,200[ac][164] 0 2020[165]
织女星E   欧洲 ESA / ASI 3,000[ac][166] 0 2024[167]
Vikram l[168]   印度 Skyroot aerospace[169] 280 200 to SSPO 0 2021[170]
Vikram ll[168]   印度 Skyroot aerospace 520 410 to SSPO 0 TBA
Vikram lll[168]   印度 Skyroot aerospace 720 580 to SSPO 0 TBA
Vulcan / Centaur   美国 联合发射同盟 27,000[171] 14,000[171] 6,500 to GEO[171]
11,300 to TLI [12]:40–49
0 2021[172]
Vulcan / ACES   美国 联合发射同盟 27,000[171] 14,400[ad] 7,200 to GEO [ad]
12,100 to TLI [171]
0 2023[173]
云峰   台湾 国家中山科学研究院 200[174] 0 TBA
Yenisei[175]   俄罗斯 TsSKB-Progress
RSC Energia
88,000 – 115,000[143] 20,000 to TLI[176][177] 0 2028[177]


Zero   日本 星际科技 100 to SSO[d][178] 0 2022–2023[179]
朱雀一号   中国大陆 蓝箭航天 300[180] 200 to SSO 1[181] 2018[181] 2018
朱雀二号   中国大陆 蓝箭航天 4,000[182] 2,000 to SSO 0 2020[183]
  1. ^ Suborbital flight tests and on-pad explosions are excluded, but launches failing en route to orbit are included.
  2. ^ Effective year for active rockets, planned year for rockets in development
  3. ^ A suborbital flight was conducted in 2014 as Angara-1.2pp, testing only the first and second stages.[5]
  4. ^ 4.0 4.1 4.2 Reference altitude 500 km
  5. ^ Upgraded to 11,115 kg by 2020[10]
  6. ^ for Starliner[17]
  7. ^ 7.0 7.1 PAF structural limit: 10,886 kg[42]
  8. ^ GTO payload is 5,550 kg when the first stage lands downrange on a drone ship (ASDS). Reduced to 3,500 kg if the first stage returns to the launch site (RTLS).
  9. ^ Additionally, one rocket exploded on the launch pad in 2016.[41]
  10. ^ GTO payload is 8,000 kg when the core first-stage booster lands downrange on a drone ship (ASDS) and the side boosters return to the launch site (RTLS). Increased to 10,000 kg if all boosters land on drone ships.[43]
  11. ^ As of 2019 Falcon Heavy has only flown in partially reusable configuration; fully expendable configuration is considered operational in the sense that it is a simplified version of the reusable configuration.
  12. ^ GTO payload with enhanced engines, as of GSLV version 2A[53]
  13. ^ A suborbital test flight was conducted in 2014 (designated LVM-3/CARE) without the cryogenic upper stage (CUS).[56]
  14. ^ 5,100 kg to a 500-km Sun-synchronous orbit; 3,300 kg to 800 km[57]:64–65
  15. ^ A suborbital test flight was conducted in April 2018.[63]
  16. ^ A suborbital test flight was conducted in March 2012.[68]
  17. ^ Includes 6 possible launches of CZ-2C (3) noted by Gunter Krebs in reference [75].
  18. ^ Reference altitude 400 km
  19. ^ A suborbital test flight was conducted in November 2018.
  20. ^ A suborbital test flight was conducted in May 2018.[113]
  21. ^ Additionally, two rockets exploded on the launch pad, one in 2012 and one in 2019.[126]
  22. ^ A suborbital test flight succeeded in 2016; both orbital flights in 2017 and 2019 failed.[129]
  23. ^ Suborbital test flight in 2004, without Fregat upper stage.[131]
  24. ^ with ICPS
  25. ^ with EUS
  26. ^ with EUS and
    advanced boosters
  27. ^ A prior version of the SS-520 flew twice as a suborbital sounding rocket in 1998 and 2000. In 2017, the addition of a small third stage enabled orbital launches of ultra-light nano- or picosatellites.[149]
  28. ^ A suborbital test flight failed in 2006. The first two orbital missions failed in 2009 and 2012, and the rocket finally reached orbit in late 2012.[160]
  29. ^ 29.0 29.1 29.2 Reference altitude 700 km
  30. ^ 30.0 30.1 引用错误:没有为名为vulcan-aces-calc的参考文献提供内容

已退役和取消的火箭

编辑
载具 国家 制造商 载荷 (kg) 发射次数
(含 亚轨道)
发射日期
LEO GTO 其他 首次 近次
安塔瑞斯110–130   美国 轨道科学公司 5,100[6] 1,500 to SSO 5[6] 2013 2014
亚利安1号   欧洲 法国航太 1,400 1,830[184] 11[184] 1979 1986
亚利安2号   欧洲 法国航太 2,270[184] 6[184] 1986 1989
亚利安3号   欧洲 法国航太 2,650[184] 11[184] 1984 1989
亚利安4号 40   欧洲 法国航太 4,600[184] 2,105 2,740 to SSO 7[184] 1990 1999
亚利安4号 42L   欧洲 法国航太 7,000[184] 3,480 4,500 to SSO 13[184] 1993 2002
亚利安4号 42P   欧洲 法国航太 6,000[184] 2,930 3,400 to SSO 15[184] 1990 2002
亚利安4号 44L   欧洲 法国航太 7,000[184] 4,720 6,000 to SSO 40[184] 1989 2003
亚利安4号 44LP   欧洲 法国航太 7,000[184] 4,220 5,000 to SSO 26[184] 1988 2001
亚利安4号 44P   欧洲 法国航太 6,500[184] 3,465 4,100 to SSO 15[184] 1991 2001
亚利安5号 G   欧洲 EADS Astrium 18,000[11] 6,900[11] 16[11] 1996 2003
亚利安5号 G+   欧洲 EADS Astrium 7,100[11] 3[11] 2004 2004
亚利安5号 GS   欧洲 EADS Astrium 16,000[185] 6,600[11] 6[11] 2005 2009[186]
亚利安5号 ES   欧洲 EADS Astrium 21,000[8] 8,000[11] 8[11] 2008 2018
ASLV   印度 印度太空研究组织[187] 150[188] 4[188] 1987 1994
Athena I   美国 洛克希德·马丁 795[189] 515 4[190] 1995 2001
Athena II   美国 洛克希德·马丁 1,800[191] 3[192] 1998 1999[193]
擎天神-半人马   美国 洛克希德公司 1,134[194] 2,222[195] 148 1962 1983
Atlas G   美国 洛克希德公司 5,900[196] 2,222 1,179 to HCO[196] 7[196] 1984 1989
Atlas H/MSD   美国 洛克希德公司 3,630[197] 5 1983 1987
擎天神1号   美国 洛克希德·马丁 5,900[196] 2,340[196] 11[196] 1990 1997
擎天神2号   美国 洛克希德·马丁 6,780[196] 2,810 2,000 to HCO[196] 10[196] 1991 1998
擎天神2号 A   美国 洛克希德·马丁 7,316[196] 3,180 2,160 to HCO[196] 23[196] 1992 2002
擎天神2号 AS   美国 洛克希德·马丁 8,618[196] 3,833 2,680 to HCO[196] 30[196] 1993 2004
擎天神3号 A   美国 洛克希德·马丁 8,686[196] 4,060 2,970 to HCO[196] 2[196] 2000 2004
擎天神3号 B/DEC   美国 洛克希德·马丁 10,759[196] 4,609[196] 1[196] 2002 2002
擎天神3号 B/SEC   美国 洛克希德·马丁 10,218[198] 4,193[196] 3[196] 2003 2005
黑箭运载火箭   英国 皇家航空研究院 73[199] 2 (+2) 1969[a] 1971
Commercial Titan III   美国 马丁·玛丽埃塔 13,100[200] 4 1990 1992
Delta 0300   美国 麦克唐纳-道格拉斯公司 340[201] 747 to SSO[202] 3[203] 1972 1973[204]
Delta 0900   美国 麦克唐纳-道格拉斯公司 1,300[205] 818 to SSO[203] 2[203] 1972 1972
Delta 1410   美国 麦克唐纳-道格拉斯公司 340[206] 1[203] 1975 1975
Delta 1604   美国 麦克唐纳-道格拉斯公司 390[207] 2[203] 1972 1973
Delta 1900   美国 麦克唐纳-道格拉斯公司 1,800[203] 1[203] 1973 1973
Delta 1910   美国 麦克唐纳-道格拉斯公司 1,066[208] 1[203] 1975 1975
Delta 1913   美国 麦克唐纳-道格拉斯公司 328[209] 1[203] 1973 1973
Delta 1914   美国 麦克唐纳-道格拉斯公司 680[210] 2[203] 1972 1973
Delta 2310   美国 麦克唐纳-道格拉斯公司 336[211] 3[203] 1974 1981
Delta 2313   美国 麦克唐纳-道格拉斯公司 243 to GEO[212] 3[203] 1974 1977
Delta 2910   美国 麦克唐纳-道格拉斯公司 1,887[203] 6[203] 1975 1978
Delta 2913   美国 麦克唐纳-道格拉斯公司 2,000[213] 700[213] 6[203] 1975 1976
Delta 2914   美国 麦克唐纳-道格拉斯公司 724[203] 30[203] 1974 1979
Delta 3910   美国 麦克唐纳-道格拉斯公司 2,494[203] 1,154 with PAM-D 10[203] 1980 1988
Delta 3913   美国 麦克唐纳-道格拉斯公司 816[214] 1[203] 1981 1981
Delta 3914   美国 麦克唐纳-道格拉斯公司 954[203] 13[203] 1975 1987
Delta 3920   美国 麦克唐纳-道格拉斯公司 3,452[203] 1,284 with PAM-D 10[203] 1982 1989
Delta 3924   美国 麦克唐纳-道格拉斯公司 1,104[203] 4[203] 1982 1984
Delta 4925   美国 麦克唐纳-道格拉斯公司 3,400[215] 1,312[203] 2[203] 1989 1990
Delta 5920   美国 麦克唐纳-道格拉斯公司 3,848[216] 1[203] 1989 1989
Delta II 6920   美国 麦克唐纳-道格拉斯公司 3,983[203] 3[203] 1990 1992
Delta II 6925   美国 麦克唐纳-道格拉斯公司 1,447[203] 14[203] 1989 1992
Delta II 7320   美国 Boeing IDS / ULA 2,865[203] 1,651 to SSO 12[203] 1999 2015
Delta II 7326   美国 Boeing IDS 934[203] 636 to TLI
629 to HCO
3[203] 1998 2001
Delta II 7420   美国 ULA 3,185[203] 1,966 to SSO 14[203] 1998 2018
Delta II 7425   美国 Boeing IDS 1,100[203] 804 to HCO 4[203] 1998 2002
Delta II 7426   美国 Boeing IDS 1,058[203] 734 to TLI
711 to HCO
1[203] 1999 1999
Delta II 7920   美国 Boeing IDS / ULA 5,030[203] 3,123 to SSO 29[203] 1998 2017
Delta II 7925   美国 Boeing IDS / ULA 1,819[203] 1,177 to TLI
1,265 to HCO
69[203] 1990 2009
Delta II-H 7920H   美国 Boeing IDS / ULA 6,097[203] 3[203] 2003 2011
Delta II-H 7925H   美国 Boeing IDS / ULA 2,171 1,508 to HCO[203] 3[203] 2003 2007
Delta III 8930   美国 Boeing IDS 8,292[203] 3,810 3[203] 1998 2000
Delta IV M   美国 Boeing IDS 9,440[27] 4,440 7,690 to polar 3[28] 2003 2006
Delta IV M+(4,2)   美国 ULA 13,140[27] 6,390 10,250 to polar 14[28] 2002 2019
Delta IV M+(5,2)   美国 ULA 11,470[27] 5,490 9,600 to polar 3[28] 2012 2018
Delta IV M+(5,4)   美国 ULA 14,140[27] 7,300 11,600 to polar 8[28] 2009 2019
钻石   法国 SEREB 107[217][218] 12 1965 1975
第聂伯   乌克兰 Yuzhmash 3,700[219] 22[219] 1999 2015[220]
能源[b]   苏联 科罗廖夫能源火箭航天集团 100,000[221] 20,000 to GEO[221]
32,000 to TLI[221]
1 (failed to orbit)[222] 1987 1987
能源-暴风雪   苏联 科罗廖夫能源火箭航天集团运载火箭
NPO Molniya轨道器
30,000[221][c] 1 1988 1988
猎鹰1号   美国 SpaceX 470[223] 5[223] 2006 2009
Falcon 9 v1.0   美国 SpaceX 10,450[224] 4,540[224] 5[225] 2010 2013
Falcon 9 v1.1   美国 SpaceX 13,150[226][d] 4,850[226] 15[225] 2013 2016
风暴一号   中国 上海市第二机电工业局 2,500[227] 8 (+3)[228] 1972 1981
GSLV Mk.I(a)   印度 印度太空研究组织 5,000[51] 1,540[229] 1[229] 2001 2001
GSLV Mk.I(b)   印度 印度太空研究组织 5,000[51] 2,150[229] 4[229] 2003 2007
GSLV Mk.I(c)   印度 印度太空研究组织 5,000[51] 1[229] 2010 2010
H-I   日本
  美国
三菱重工业 1,400[230] 9 1986 1992
H-II / IIS   日本 三菱重工业 10,060[231] 4,000[232] 7[232] 1994 1999
H-IIA 2022   日本 三菱重工业 4,500[58] 3[58] 2005 2007
H-IIA 2024   日本 三菱重工业 11,000[233] 5,000[58] 7[58] 2002 2008
H-IIB   日本 三菱重工业 16,500 (ISS)[60] 8,000 8[234] 2009 2019
J-I   日本 日产[235] 1,000[236] 0 (+1) 1996 1996
开拓者一号   中国 中国运载火箭技术研究院 100[237] 2 2002 2003
宇宙3号M   苏联
  俄罗斯
NPO Polyot 1,500[238] 442[239] 1967 2010
Lambda 4S   日本 日产[235] 26[240] 5 1966 1970
长征一号   中国 中国运载火箭技术研究院 300[241] 2[242] 1970 1971
长征一号丁   中国 中国运载火箭技术研究院 740[243] 0 (+3)[242] 1995[e] 2002
长征二号甲   中国 中国运载火箭技术研究院 2,000[244] 4[75] 1974 1978
长征二号E   中国 中国运载火箭技术研究院 9,200[75] 7[75] 1990 1995
长征三号   中国 中国运载火箭技术研究院 5,000[77] 13[77] 1984 2000
长征三号乙   中国 中国运载火箭技术研究院 11,200[76] 5,100 5,700 to SSO 12[77] 1996 2012
长征四号甲   中国 中国运载火箭技术研究院 4,000 2[78] 1988 1990
M-V   日本 日产[235] (1997–2000)
IHI Aerospace[31] (2000–2006)
1,850[240] 7 1997 2006
闪电   苏联 RSC Energia 1,800[245] 40[246] 1960 1967
Molniya-M   苏联
  俄罗斯
RSC Energia 2,400[247] 280[248] 1965 2010
Mu-3C   日本 日产[235] 195[240] 4 1974 1979
Mu-3H   日本 日产[235] 300[240] 3 1977 1978
Mu-3S   日本 日产[235] 300[240] 4 1980 1984
Mu-3SII   日本 日产[235] 770[240] 8 1985 1995
Mu-4S   日本 日产[235] 180[240] 4 1971 1972
N1   苏联 科罗廖夫能源火箭航天集团 95,000[249][250][251][f] 4[252] (never reached orbit) 1969 1972
N-I   日本
  美国
三菱重工业 1,200[253] 7 1975 1982
N-II   日本
  美国
三菱重工业 2,000[254] 8 1981 1987
罗老号   韩国
  俄罗斯
KARI/赫鲁尼切夫 100[255] 3 2009 2013
NOTS-EV-1 Pilot   美国 美国海军 1.05[256] 10 1958 1958
白头山   朝鲜 KCST 700[257] 0 (+1) 1998 1998
Polyot   苏联 RSC Energia 1,400 2 1963 1964
质子K   苏联
  俄罗斯
赫鲁尼切夫 19,760[258] 4,930[259] 311[260] 1965 2012
PSLV-G   印度 印度太空研究组织 3,200[123] 1,050 1,600 to SSO 12[123] 1993 2016[261]
呼啸   俄罗斯 赫鲁尼切夫 1,950[262] 1,200 to SSO 34[262] 1990 2019
土星1号   美国 克莱斯勒 (S-I)
道格拉斯 (S-IV)
9,000[263] 10[264] 1961 1965[264]
土星1B号   美国 克莱斯勒 (S-IB)
道格拉斯 (S-IVB)
18,600[265] 9[266] 1966 1975
土星5号   美国 波音 (S-IC)
北美 (S-II)
道格拉斯 (S-IVB)
140,000[267][268] 47,000 to TLI[269] 13[270][271][g] 1967 1973
Scout   美国 美国空军/NASA 174[272] 125 1961 1994
Shtil'   俄罗斯 Makeyev 280–420[273] 2[273] 1998 2006
SLV   印度 印度太空研究组织 40[274] 4[274] 1979 1983[274]
联盟号   苏联 RSC Energia 6,450 31[275] 1966 1976
联盟-FG   俄罗斯 TsSKB-Progress 6,900[276] 70[132][277] 2001 2019
联合L   苏联 RSC Energia 5,500 3[278] 1970 1971
Soyuz-M   苏联 RSC Energia 6,600 8[279] 1971 1976
Soyuz-U   苏联
  俄罗斯
TsSKB-Progress 6,650 from Baikonour[280]
6,150 from Plesetsk[280]
786[132][133][281] 1973 2017
Soyuz-U2   苏联
  俄罗斯
TsSKB-Progress 7,050 72[282] 1982 1995
航天飞机   美国 ATKSRB
马丁·玛丽埃塔外储箱
罗克韦尔轨道器
24,400[c]
3,550 to escape with IUS[283] 135[285] 1981 2011
Sputnik 8K71PS   苏联 RSC Energia 500[286] 2 1957 1957
Sputnik 8A91   苏联 RSC Energia 1,327 2 1958 1958
Start-1   俄罗斯 MITT 532 350 to SSO[287] 5[288] 1993 2006
天箭   俄罗斯 赫鲁尼切夫 1,400[289] 3[290] 2003 2014
Titan II GLV   美国 马丁·玛丽埃塔 3,600[291] 11 (+1) 1964 1966
泰坦2号23G   美国 马丁·玛丽埃塔 3,600[292] 13 1988 2003
泰坦3号A   美国 马丁·玛丽埃塔 3,100[293] 4 1964 1965
泰坦3号B   美国 马丁·玛丽埃塔 3,000[294] 70 1966 1987
Titan IIIC   美国 马丁·玛丽埃塔 13,100[295] 36 1965 1982
泰坦3号D   美国 马丁·玛丽埃塔 12,300[296] 22 1971 1982
泰坦3号E   美国 马丁·玛丽埃塔 15,400[297] 7 1974 1977
Titan 34D   美国 马丁·玛丽埃塔 4,515[298] 15 1982 1989
泰坦4号A   美国 马丁·玛丽埃塔 17,110[299] 4,944 with IUS
22[299] 1989 1998
泰坦4号B   美国 洛克希德·马丁 21,682[300] 5,761[300]
(9,000 with upper stage)
17[299] 1997 2005
旋风-2A   苏联 Yuzhmash 3,350[301] 8[302] 1967 1969
Tsyklon-2   苏联
  乌克兰
Yuzhmash 2,820[303] 106[304] 1969 2006[304]
Tsyklon-3   苏联
  乌克兰
Yuzhmash 1,920[305] 122[306] 1977 2009[306]
Vanguard   美国 马丁 9[307] 11 (+1) 1957 1959
Vector-R   美国 Vector Space Systems 64[308] 0 (+2) 2017 2017
VLS-1   巴西 AEBIAE 380[309] 2[h](从未入轨) 1997 2003
波浪   俄罗斯 Makeyev 100[310] 1 (+5)[273] 1995[i] 2005[273]
Voskhod   苏联 RSC Energia 6,000[311] 306 1963 1976
Vostok-L   苏联 RSC Energia 390 to TLI[312] 4 1960 1960
Vostok-K   苏联 RSC Energia 2,460[313] 16 1960 1964
Vostok-2   苏联 RSC Energia 4,730[313] 45 1962 1967
Vostok-2M   苏联 RSC Energia 1,300[314] 93 1964 1991
Soyuz/Vostok   苏联 RSC Energia 6,000[315] 2 1965 1966
天顶2号   苏联
  乌克兰
南方设计局 13,740[316] 36[317] 1985 2004[318]
Zenit-2M / 2SLB   乌克兰 南方设计局 13,920[316] 2[317] 2007 2011
Zenit-3F   乌克兰 南方设计局 1,740 to GEO[319] 4[320] 2011 2017
天顶3号SL   乌克兰 Yuzhmash
RSC Energia
7,000[320] 6,160 36[320] 1999 2014
Zenit-3SLB / 3M   乌克兰 Yuzhmash
RSC Energia
3,750[320] 6[320] 2008 2013
  1. ^ First suborbital test in 1969, first orbital launch attempt in 1970
  2. ^ Without Buran, and assuming payload providing orbital insertion
  3. ^ 3.0 3.1 The U.S. Space Shuttle Transportation System and the Soviet Energia-Buran system consist of launch vehicle rockets and returnable spaceplane orbiter. Payload values listed here are for the mass of the payload in cargo bay of the spaceplanes, excluding the mass of the spaceplanes themselves.
  4. ^ The SpaceX website lists the F9 payload to LEO as 13,150kg. The payload to GTO is listed as 4,850kg. However, SpaceX has stated that these numbers include a 30% margin to accommodate re-usability.
  5. ^ Suborbital test flights in 1995, 1997 and 2002, no orbital launches attempted
  6. ^ The N1 rocket was initially designed for 75mt LEO capacity and launch attempts were made with this version, but there were studies to increase the payload capacity to 90–95 mt, if a liquid-hydrogen upper stage engine could be developed.
  7. ^ The Saturn V made 13 launches, 12 of which reached the correct orbits, and the other (Apollo 6) reached a different orbit than the one which had been planned; however, some mission objectives could still be completed; NASA, Saturn V News Reference, Appendix: Saturn V Flight History (1968) 互联网档案馆存档,存档日期2011-05-17.. For more information, see the Saturn V article. The Saturn V launch record is usually quoted as having never failed, e.g. "The rocket was masterminded by Wernher Von Braun and did not fail in any of its flights", Alan Lawrie and Robert Godwin; Saturn, but the Apollo 6 launch should be considered a partial mission failure. The 13th launch of Saturn V was in special configuration (SA-513) with the Skylab.
  8. ^ 三级发射前爆炸
  9. ^ First orbital launch attempt in 2005

各国发射系统

编辑

下图显示了每个国家/地区开发的发射系统的数量,并按运行状态进行了细分。火箭变种没有区别;也就是说,擎天神5号系列的所有配置401-431、501-551、552和N22仅计一次。

10
20
30
40
50
AUS
BRZ
CHN
EUR
ESP
FRA
IND
IRN
ISR
JPN
NKR
NZL
RUS
SKR
TWN
UKR
UK
USA
  •   运作中
  •   发展中
  •   已退役

备注

编辑
  1. ^ Elon Musk [@elonmusk]. Mass of initial SN ships will be a little high & Isp a little low, but, over time, it will be ~150t to LEO fully reusable (推文). 2020-03-31 –通过Twitter. 
  2. ^ Elon Musk [@elonmusk]. Mass of initial SN ships will be a little high & Isp a little low, but, over time, it will be ~150t to LEO fully reusable (推文). 2020-03-31 –通过Twitter. 

参考资料

编辑
  1. ^ Firefly Alpha. 萤火虫太空. [2019-10-29]. (原始内容存档于2021-01-26). 
  2. ^ Clark, Steven. Firefly Offering Free Launch For Research and Education Payloads. SpaceFlightNow. 2019-06-18 [2019-06-19]. (原始内容存档于2020-11-07). 
  3. ^ 3.0 3.1 3.2 Angara Launch Vehicle Family. 赫鲁尼切夫国家航天科研生产中心. [2018-09-02]. (原始内容存档于2014-12-24). 
  4. ^ SLP studio. Раскрыты планы пусков ракет "Протон" и "Ангара" на 2019 год [2019 launch plans for Proton and Angara have been announced]. 2018-10-17 [2018-10-25]. (原始内容存档于2020-07-28) –通过Yandex Zen (俄语). 
  5. ^ Graham, William. Angara rocket launches on maiden flight. NASASpaceFlight.com. 2014-07-09 [2018-09-02]. (原始内容存档于2021-01-14). 
  6. ^ 6.0 6.1 6.2 Krebs, Gunter. Antares (Taurus-2). Gunter's Space Page. [2019-12-01]. (原始内容存档于2020-11-30). 
  7. ^ Krebs, Gunter. Antares 230. Gunter's Space Page. [2019-11-20]. (原始内容存档于2020-10-22). 
  8. ^ 8.0 8.1 Ariane 5 Users Manual (PDF). Issue 4. Arianespace: 39 (ISS orbit). [2007-11-13]. (原始内容 (PDF)存档于2007-09-27). 
  9. ^ Clark, Stephen. Ariane 5 succeeds in launch of two high-value communications satellites. Spaceflight Now. 2017-06-02 [2018-01-17]. (原始内容存档于2018-06-26). 
  10. ^ Arianespace begins building final 10 Ariane 5s ahead of Ariane 6 operational debut. Space Daily. 2018-01-10 [2018-01-17]. (原始内容存档于2019-02-01). Ariane 5 set a new record in June 2017 by lofting 10,865 kg. into geostationary transfer orbit (GTO). From this payload lift record, Ariane 5's performance will be increased another 250 kg. 
  11. ^ 11.00 11.01 11.02 11.03 11.04 11.05 11.06 11.07 11.08 11.09 Krebs, Gunter. Ariane-5. Gunter's Space Page. [2019-11-30]. (原始内容存档于2020-11-12). 
  12. ^ 12.0 12.1 12.2 12.3 12.4 12.5 12.6 Lagier, Roland. Ariane 6 User's Manual Issue 1 Revision 0 (PDF). Arianespace. March 2018 [2018-05-27]. (原始内容存档 (PDF)于2020-11-11). 
  13. ^ ESA confirms Ariane 6 delay to 2021. SpaceNews. 2020-07-10 [2020-07-20] (美国英语). 
  14. ^ Clark, Stephen. Ariane 6 rocket holding to schedule for 2020 maiden flight. Spaceflight Now. 2016-08-13 [2016-08-13]. (原始内容存档于2016-08-13). 
  15. ^ 15.0 15.1 Vance, Ashlee. A Small-Rocket Maker Is Running a Different Kind of Space Race. Bloomberg News. 2020-02-03 [2020-02-03]. (原始内容存档于2020-11-30). 
  16. ^ 16.00 16.01 16.02 16.03 16.04 16.05 16.06 16.07 16.08 16.09 16.10 16.11 16.12 16.13 16.14 16.15 16.16 16.17 Krebs, Gunter. Atlas-5. Gunter's Space Page. [2019-08-10]. (原始内容存档于2014-04-27). 
  17. ^ Egan, Barbara [@barbegan13]. We are calling the config N22. No payload fairing with the Starliner on board (推文). 2016-10-15 –通过Twitter. 
  18. ^ Roulette, Joey. 'Bull's-eye' landing in New Mexico for Boeing's Starliner astronaut capsule. Reuters. 2019-12-22 [2019-12-22]. (原始内容存档于2020-07-28). 
  19. ^ Firefly Beta. 萤火虫太空. [2018-08-11]. (原始内容存档于2018-08-12). 
  20. ^ 20.0 20.1 Bloostar Launch Vehicle Payload User's Guide (PDF). Revision 2. Zero 2 Infinity. January 2018 [2018-09-04]. Z2I-BS-TN-1-0316-R2. (原始内容存档 (PDF)于2018-04-30). 
  21. ^ Perigee Aerospace Inc.. [2020-06-14]. (原始内容存档于2020-12-01) (美国英语). 
  22. ^ Korean firm Perigee plans first South Australian rocket launch. 2019-10-28 [2020-08-09]. (原始内容存档于2020-10-20). 
  23. ^ Ceres-1. Gunter's Space page. [2020-02-20]. (原始内容存档于2020-11-07). 
  24. ^ 24.0 24.1 Boucher, Marc. Exclusive: Maritime Launch Services Selects Nova Scotia Site for Spaceport Over 13 Other Locations. SpaceQ. 2017-03-14 [2017-03-18]. (原始内容存档于2017-11-19). 
  25. ^ Krebs, Gunter. Tsiklon-4M (Cyclone-4M). Gunter's Space Page. [2017-04-11]. (原始内容存档于2020-08-01). 
  26. ^ Cyclone 4M fully integrated upper stage performs successful qualification test (新闻稿). Yuzhnoye Design Office and Maritime Launch Services. 2019-10-21 [2019-12-01]. (原始内容存档于2021-01-04). 
  27. ^ 27.0 27.1 27.2 27.3 27.4 Delta IV Launch Services User's Guide, June 2013 (PDF). United Launch Alliance: 2–10. June 2013 [2017-10-09]. (原始内容 (PDF)存档于2014-07-10). 
  28. ^ 28.0 28.1 28.2 28.3 28.4 Krebs, Gunter. Delta-4. Gunter's Space Page. [2019-03-17]. (原始内容存档于2014-10-17). 
  29. ^ 29.0 29.1 Rocket Lab Increases Electron Payload Capacity, Enabling Interplanetary Missions and Reusability. Rocket Lab. [2020-08-04]. (原始内容存档于2020-08-09) (英语). 
  30. ^ Completed Missions. Rocket Lab. [2020-06-14]. (原始内容存档于2020-12-03) (英语). 
  31. ^ 31.0 31.1 Projects&Products. IHI Aerospace. [2011-03-08]. (原始内容存档于2011-04-06). 
  32. ^ Epsilon a solid propellant launch vehicle for new age (PDF). IHI Aerospace. [2018-02-03]. (原始内容存档 (PDF)于2020-09-20). 
  33. ^ Krebs, Gunter. Epsilon. Gunter's Space Page. [2019-01-18]. (原始内容存档于2020-12-02). 
  34. ^ 34.0 34.1 ERIS-S | ERIS-L. Gilmour Space Technologies. [2019-12-01]. (原始内容存档于2020-11-30). 
  35. ^ Launching small satellites to LEO from 2021/22. Gilmour Space Technologies. [2019-12-01]. (原始内容存档于2020-11-30). 
  36. ^ 存档副本. [2020-08-09]. (原始内容存档于2020-11-25). 
  37. ^ 37.0 37.1 37.2 37.3 37.4 37.5 Capabilities & Services. SpaceX. [2017-04-05]. (原始内容存档于2013-10-07). 
  38. ^ de Selding, Peter B. Iridium's SpaceX launch slowed by Vandenberg bottleneck. SpaceNews. 2016-06-15 [2016-06-21]. (原始内容存档于2021-10-01). 
  39. ^ Krebs, Gunter. Falcon-9 v1.2 (Falcon-9FT). Gunter's Space Page. [2018-11-19]. (原始内容存档于2020-11-17). 
  40. ^ Krebs, Gunter. Falcon-9 v1.2 (Block 5) (Falcon-9FT (Block 5)). Gunter's Space Page. [2019-11-20]. (原始内容存档于2020-11-17). 
  41. ^ Malik, Tariq. Launchpad Explosion Destroys SpaceX Falcon 9 Rocket, Satellite in Florida. Space.com. 2016-09-01 [2016-09-01]. (原始内容存档于2016-09-02). 
  42. ^ Falcon 9 Launch Vehicle – Payload User's Guide (PDF). Revision 2. SpaceX: 15. 2015-10-21 [2015-11-29]. (原始内容 (PDF)存档于2017-03-14). 
  43. ^ 43.0 43.1 43.2 Koenigsmann, Hans. SpaceX performance tiers to GTO. IAC 2018. 3 October 2018 [23 October 2018]. (原始内容存档于2020-11-12). 
  44. ^ Krebs, Gunter. Falcon-9 v1.2(ex) (Falcon-9FT(ex)). Gunter's Space Page. [2018-06-29]. (原始内容存档于2020-08-01). 
  45. ^ Krebs, Gunter. Falcon-9 v1.2 (Block 5)(ex) (Falcon-9FT (Block 5)(ex)). Gunter's Space Page. [2019-08-10]. (原始内容存档于2020-12-09). 
  46. ^ Either 2 or 3 boosters recoverable
  47. ^ Musk, Elon. Making Life Multiplanetary. SpaceX. 事件发生在 15:35. [2018-03-22] –通过YouTube. BFR in fully reusable configuration, without any orbital refueling, we expect to have a payload capability of 150 tonnes to low Earth orbit and that compares to about 30 for Falcon Heavy 
  48. ^ Elon Musk [@elonmusk]. Side boosters landing on droneships & center expended is only ~10% performance penalty vs fully expended. Cost is only slightly higher than an expended F9, so around $95M. (推文). 2018-02-12 –通过Twitter. 
  49. ^ Krebs, Gunter. Falcon-Heavy. Gunter's Space Page. [2019-04-15]. (原始内容存档于2020-11-29). 
  50. ^ Krebs, Gunter. Falcon-Heavy (Block 5). Gunter's Space Page. [2019-07-15]. (原始内容存档于2020-10-26). 
  51. ^ 51.0 51.1 51.2 51.3 Geosynchronous Satellite Launch Vehicle (GSLV). 印度太空研究组织. [August 31, 2018]. (原始内容存档于2019-06-21). 
  52. ^ Subramanian, T.S. ISRO developing vehicle to launch small satellites. Frontline. 2018-09-14 [2018-08-29]. 
  53. ^ 53.0 53.1 Krebs, Gunter. GSLV. Gunter's Space Page. [2018-12-19]. (原始内容存档于2014-10-06). 
  54. ^ GSLV MkIII-M1 Successfully Launches Chandrayaan-2 spacecraft - ISRO. www.isro.gov.in. [2019-12-01]. (原始内容存档于2019-12-12). 
  55. ^ Krebs, Gunter. GSLV Mk.3 (LVM-3). Gunter's Space Page. [2019-08-10]. (原始内容存档于2020-07-28). 
  56. ^ Crew module Atmospheric Re-entry Experiment (CARE). 印度太空研究组织. 2014-12-18 [2018-09-04]. (原始内容存档于2020-09-25). 
  57. ^ 57.0 57.1 57.2 57.3 57.4 H-IIA – User's Manual (PDF). 4.0. Mitsubishi Heavy Industries, MHI Launch Services. February 2015 [2018-09-04]. YET04001. (原始内容存档 (PDF)于2020-07-28). 
  58. ^ 58.0 58.1 58.2 58.3 58.4 58.5 Krebs, Gunter. H-2A. Gunter's Space Page. [2018-11-12]. (原始内容存档于2017-08-19). 
  59. ^ Only the X00 version of the H3 is intended for LEO launches. The higher capability X02 and X03 variants could presumably launch significantly more payload to LEO, but are not specified for this mission. Space Launch Report: H3 Data Sheet页面存档备份,存于互联网档案馆), retrieved 20 Feb. 2019/
  60. ^ 60.0 60.1 MHI Launch Services: Launch Vehicles. 三菱重工业, MHI Launch Services. [4 September 2018]. (原始内容存档于2020-12-15). 
  61. ^ 61.0 61.1 新型基幹ロケットの開発状況について [Development status of the new carrier rocket] (PDF). JAXA: 3. 2015-07-02 [2015-07-08]. (原始内容存档 (PDF)于2021-01-24) (日语). 
  62. ^ Henry, Caleb. Blue Origin to offer dual launch with New Glenn after fifth mission. SpaceNews. 2018-07-12 [2018-07-12]. 
  63. ^ 63.0 63.1 63.2 63.3 Jones, Andrew. Chinese commercial launch sector nears takeoff with suborbital rocket test. SpaceNews. 2018-05-15 [2018-08-16]. 
  64. ^ Krebs, Gunter. Shian Quxian-1 (SQX-1, Hyperbola-1). Gunter's Space Page. [2019-08-01]. (原始内容存档于2019-07-25). 
  65. ^ Huang, Echo. A private Chinese space firm successfully launched a rocket into orbit. Quartz. 2019-07-25 [2019-08-10]. (原始内容存档于2019-07-25). 
  66. ^ 66.0 66.1 Krebs, Gunter. Jielong-1 (Smart Dragon-1, SD 1). Gunter's Space Page. [2019-11-02]. (原始内容存档于2019-06-28). 
  67. ^ 67.0 67.1 Krebs, Gunter. Kaituozhe-2 (KT-2). Gunter's Space Page. [2019-11-02]. (原始内容存档于2020-12-23). 
  68. ^ 68.0 68.1 68.2 Krebs, Gunter. Kuaizhou-1 (KZ-1) / Fei Tian 1. Gunter's Space Page. [2020-01-08]. (原始内容存档于2020-10-29). 
  69. ^ 快舟十一号小型固体运载火箭(KZ-11):推迟到2018年首飞 [Kuaizhou 11 small solid launch vehicle (KZ-11): First flight planned for 2018]. 2017-10-30 [2018-03-10]. (原始内容存档于2018-07-27) (中文). 
  70. ^ 70.0 70.1 Kuai Zhou (Fast Vessel). China Space Report. [2018-03-10]. (原始内容存档于2018-03-11). 
  71. ^ China to test large solid-fuel rocket engine. China Daily. 2017-12-25 [2018-03-10]. (原始内容存档于2020-09-23). 
  72. ^ Clark, Stephen. Virgin Orbit nears first test flights with air-launched rocket. Spaceflight Now. 2018-08-31 [2018-09-01]. (原始内容存档于2020-11-28). 
  73. ^ LauncherOne service guide (PDF). Virgin Orbit. 2017 [2017-08-07]. (原始内容 (PDF)存档于2018-03-28). 
  74. ^ Two satellites with secretive missions launched by China. Spaceflight Now. 2018-10-12 [2018-10-12]. (原始内容存档于2020-12-24). 
  75. ^ 75.0 75.1 75.2 75.3 75.4 75.5 75.6 Krebs, Gunter. CZ-2 (Chang Zheng-2). Gunter's Space Page. [2019-09-25]. (原始内容存档于2014-12-26). 
  76. ^ 76.0 76.1 76.2 76.3 LM-3A Series Launch Vehicles User's Manual Issue 2011 (PDF). 2011 [2015-08-17]. (原始内容存档 (PDF)于2015-07-17). 
  77. ^ 77.0 77.1 77.2 77.3 77.4 77.5 Krebs, Gunter. CZ-3 (Chang Zheng-3). Gunter's Space Page. [2020-01-08]. (原始内容存档于2014-11-15). 
  78. ^ 78.0 78.1 78.2 78.3 Krebs, Gunter. CZ-4 (Chang Zheng-4). Gunter's Space Page. [2020-01-08]. (原始内容存档于2014-10-22). 
  79. ^ Krebs, Gunter. CZ-4C (Chang Zheng-4C). Gunter's Space Page. [2018-08-16]. (原始内容存档于2020-12-23). 
  80. ^ Kyle, Ed. CZ-5 Data Sheet. [2020-08-09]. (原始内容存档于2020-08-03). 
  81. ^ 81.0 81.1 Qin, Xudong; Long, Lehao; Rong, Yi. 我国航天运输系统成就与展望 [Achievements and prospects of China's space transportation system]. 深空探测学报 (Journal of Deep Space Exploration). April 2016 [2017-08-28]. doi:10.15982/j.issn.2095-7777.2016.04.003. (原始内容存档于2020-07-28) (中文). 
  82. ^ 82.0 82.1 82.2 Krebs, Gunter. CZ-5 (Chang Zheng-5). Gunter's Space Page. [2020-01-08]. (原始内容存档于2020-11-09). 
  83. ^ 83.0 83.1 Jones, Andrew. China prepares to launch new rockets as part of push to boost space program. space.com. 2020-02-14 [2020-02-14]. (原始内容存档于2021-01-18). 
  84. ^ Barbosa, Rui. China conducts debut launch of Long March 6. NASASpaceFlight.com. [2015-09-26]. (原始内容存档于2016-08-17). 
  85. ^ Krebs, Gunter. CZ-6 (Chang Zheng-6). Gunter's Space Page. [2020-01-08]. (原始内容存档于2021-01-26). 
  86. ^ "长征七号"运载火箭具备近地轨道13.5吨、700千米太阳同步轨道5.5吨运载能力. 新华网. 2011-12-29 [2020-08-09]. (原始内容存档于2015-11-02). 
  87. ^ Krebs, Gunter. CZ-7 (Chang Zheng-7). Gunter's Space Page. [2020-02-19]. (原始内容存档于2020-11-30). 
  88. ^ 长征七号首飞成功 空间实验室任务大幕拉开 [Successful maiden flight of the Long March 7 mission Damulakai]. www.spacechina.com. 2016-06-25 [2016-06-25]. (原始内容存档于2016-10-06) (中文). 
  89. ^ 89.0 89.1 89.2 89.3 Jones, Andrew. China reveals details for super-heavy-lift Long March 9 and reusable Long March 8 rockets. SpaceNews. 2018-07-05 [2018-09-04]. (原始内容存档于2023-03-12). 
  90. ^ Krebs, Gunter. CZ-8 (Chang Zheng-8). Gunter's Space Page. [2018-08-16]. (原始内容存档于2021-01-12). 
  91. ^ Perrett, Bradley. Chinese Super-Heavy Launcher Designs Exceed Saturn V. Aviation Week. 2013-09-30 [2014-12-04]. (原始内容存档于2016-12-26). 
  92. ^ 92.0 92.1 Mizokami, Kyle. China Working on a New Heavy-Lift Rocket as Powerful as Saturn V. 2018-03-20 [2018-09-04]. (原始内容存档于2020-07-28). 
  93. ^ China to develop new series of carrier rockets: expert. Xinhua.net. 2018-07-02 [2018-09-25]. (原始内容存档于2020-07-28). 
  94. ^ China to launch Long March-9 rocket in 2028. Xinhua.net. 2018-09-19 [2018-09-25]. (原始内容存档于2020-12-24). 
  95. ^ Chan, Kai Yee. China reveals CZ-11 anti-ASAT rocket. Chinese Daily Mail. 2015-10-08 [2018-09-04]. (原始内容存档于2019-02-23). 
  96. ^ Krebs, Gunter. CZ-11 (Chang Zheng-11). Gunter's Space Page. [2019-09-20]. (原始内容存档于2021-01-26). 
  97. ^ Minotaur I Space Launch Vehicle—Fact Sheet (PDF). Orbital Sciences Corporation. 2012 [2012-02-28]. (原始内容存档 (PDF)于2014-02-09). Spacecraft mass-to-orbit of up to 580 kg to LEO (28.5 deg, 185 km) 
  98. ^ Krebs, Gunter. Minotaur-1 (OSP-SLV). Gunter's Space Page. [2017-08-28]. (原始内容存档于2020-09-25). 
  99. ^ Minotaur IV – Fact sheet (PDF). Orbital Sciences Corporation. 2010 [2009-03-04]. BR06005d. (原始内容 (PDF)存档于2010-10-08). 
  100. ^ 100.0 100.1 100.2 Krebs, Gunter. Minotaur-3/-4/-5/-6 (OSP-2 Peacekeeper SLV). Gunter's Space Page. [2017-08-28]. (原始内容存档于2020-12-02). 
  101. ^ Taurus. Orbital Sciences Corporation. 2012 [2020-08-09]. (原始内容存档于2012-07-22). 
  102. ^ Minotaur-C, Ground-Launched Space Launch Vehicle (PDF). Orbital Sciences Corporation. 2014 [2020-08-09]. FS003_02_2998. (原始内容 (PDF)存档于2014-07-14). 
  103. ^ Krebs, Gunter. Taurus / Minotaur-C. Gunter's Space Page. [2017-11-30]. (原始内容存档于2016-12-17). 
  104. ^ 104.0 104.1 Henry, Caleb. PLD Space, after ESA input, doubles lift capacity of smallsat launcher. SpaceNews. 2018-11-28 [2018-11-29]. 
  105. ^ Foust, Jeff. Eutelsat first customer for Blue Origin's New Glenn. SpaceNews. 2017-03-08 [2017-03-08]. (原始内容存档于2021-09-22). 
  106. ^ Blue Origin resets schedule: First crew to space in 2019, first orbital launch in 2021. Geekwire. 2018-10-10 [2018-11-09]. (原始内容存档于2018-10-22). 
  107. ^ 107.0 107.1 107.2 Lin, Jeffrey; Singer, P.W. China could become a major space power by 2050. Popular Science. 2017-12-18 [2018-09-04]. (原始内容存档于2020-11-30). 
  108. ^ 108.0 108.1 Korea Space Launch Vehicle (Nuri). Korea Aerospace Research Institute. [2019-12-01]. (原始内容存档于2021-01-28). 
  109. ^ 109.0 109.1 109.2 109.3 109.4 109.5 Schumann, Thomas [@Tschnn]. Performance of the Omega rocket by @northropgrumman #IAC2019 (推文). 2019-10-23 [2020-03-17] –通过Twitter. 
  110. ^ 110.0 110.1 OmegA – Intermediate/Heavy Class Space Launch Vehicle (PDF). Northrop Grumman. 2018 [2018-06-07]. DS18010_D22819. (原始内容 (PDF)存档于2019-08-05). 
  111. ^ 111.0 111.1 Goh, Deyana. Chinese startup One Space successfully tests first stage engine for orbital rocket. Spacetech Asia. 2018-07-05 [2018-08-16]. (原始内容存档于2020-11-09). 
  112. ^ Krebs, Gunter. OS-M (Chongqing SQX). Gunter's Space Page. [2019-04-15]. (原始内容存档于2020-07-28). 
  113. ^ Jones, Andrew. Chinese company OneSpace sends OS-X rocket to 40 km in maiden flight. GBTimes. 2018-05-17 [2018-05-17]. (原始内容存档于2020-02-25). 
  114. ^ 114.0 114.1 Krebs, Gunter. Pegasus. Gunter's Space Page. [2019-10-11]. (原始内容存档于2013-07-10). 
  115. ^ Clark, Stephen. NASA Awards Launch for Orbital's Pegasus Rocket. Spaceflight Now. 2019-10-11 [2019-10-11]. (原始内容存档于2020-08-08). 
  116. ^ About us. Orbex. [2018-09-04]. (原始内容存档于2020-11-12). Orbex can accommodate a range of payload capacities between 100kg-220kg, to altitudes of between 200km-1250km. 
  117. ^ 117.0 117.1 Foust, Jeff. Orbex stakes claim to European smallsat launch market. SpaceNews. 2018-07-18 [2018-09-04]. 
  118. ^ Proton Launch System Mission Planner's Guide Section 2 LV Performance (PDF). International Launch Services. [2016-04-07]. (原始内容存档 (PDF)于2012-09-04). 
  119. ^ Proton Launch System Mission Planner's Guide, LKEB-9812-1990. International Launch Services: 2. [2007-11-12]. (原始内容存档 (PDF)于2007-10-27). LEO i = 51.6°, H = 200 km circular ... GTO (1800 m/s from GSO) i = 31.0°, Hp = 2100 km, Ha = 35,786 km 
  120. ^ Krebs, Gunter. Proton-M Blok-DM-2. Gunter's Space Page. [2017-10-09]. (原始内容存档于2014-11-01). 
  121. ^ Krebs, Gunter. Proton-M Blok-DM-03. Gunter's Space Page. [2019-08-10]. (原始内容存档于2014-10-09). 
  122. ^ Krebs, Gunter. Proton-K and -M Briz-M. Gunter's Space Page. [2019-10-12]. (原始内容存档于2014-12-30). 
  123. ^ 123.0 123.1 123.2 123.3 123.4 123.5 123.6 123.7 Krebs, Gunter. PSLV. Gunter's Space Page. [2019-12-01]. (原始内容存档于2011-08-02). 
  124. ^ Arunan, S.; Satish, R. Mars Orbiter Mission spacecraft and its challenges. Current Science. 2015-09-25, 109 (6): 1061–1069. doi:10.18520/v109/i6/1061-1069. 
  125. ^ ABL Space Systems. [2020-09-19]. (原始内容存档于2017-10-06). 
  126. ^ 126.0 126.1 126.2 Krebs, Gunter. Safir. Gunter's Space Pages. [2019-03-02]. (原始内容存档于2016-12-13). 
  127. ^ Shavit. Space Launch Report. 2016-09-13 [2018-09-04]. (原始内容存档于2016-11-04). LEO Payload 200 x 1,600 km x 143 deg – Shavit: 160 kg – Shavit-1: 225 kg – Shavit-2: 300 kg 
  128. ^ Krebs, Gunter. Shavit. Gunter's Space Pages. [2016-12-20]. (原始内容存档于2020-08-01). 
  129. ^ 129.0 129.1 129.2 Krebs, Gunter. Simorgh (Safir-2). Gunter's Space Page. [2019-01-15]. (原始内容存档于2017-07-30). 
  130. ^ 130.0 130.1 Soyuz-2.1 Launch Vehicle. Progress Rocket Space Centre. [2018-02-02]. (原始内容存档于2016-12-21). 
  131. ^ 131.0 131.1 Krebs, Gunter. Soyuz-2-1a (14A14). Gunter's Space Page. [2019-08-10]. (原始内容存档于2014-11-29). 
  132. ^ 132.0 132.1 132.2 132.3 132.4 132.5 Krebs, Gunter. Soyuz with Fregat upper stage. Gunter's Space Page. [2019-09-26]. (原始内容存档于2020-11-16). 
  133. ^ 133.0 133.1 Krebs, Gunter. Soyuz with Ikar and Volga upper stages. Gunter's Space Page. [20 December 2016]. (原始内容存档于2020-08-05). 
  134. ^ Soyuz Rocket. Space Launch Report. [2015-05-17]. (原始内容存档于2016-05-02). 
  135. ^ Krebs, Gunter. Soyuz-2-1b. Gunter's Space Page. [2019-09-27]. (原始内容存档于2014-10-29). 
  136. ^ Soyuz-ST. Encyclopedia Astronautica. [2015-05-17]. (原始内容存档于2015-08-24). 
  137. ^ 137.0 137.1 Soyuz-ST Launch Vehicle. Progress Rocket Space Centre. [2015-05-17]. (原始内容存档于2016-12-21). 
  138. ^ Soyuz 2 Launch Vehicle. Russian Space Web. [2015-05-19]. (原始内容存档于2016-04-30). 
  139. ^ Soyuz overview. Arianespace. [2018-06-07]. (原始内容存档于2020-12-15). 
  140. ^ 140.0 140.1 Krebs, Gunter. Soyuz core only. Gunter's Space Page. [2019-08-10]. (原始内容存档于2020-08-05). 
  141. ^ Zak, Anatoly. Preliminary design for Soyuz-5 races to completion. Russian Space Web. 2017-08-07 [2018-09-02]. (原始内容存档于2020-02-18). 
  142. ^ Zak, Anatoly. Russia's "new" next manned rocket detailed. Russian Space Web. 2017-11-13 [2018-09-02]. (原始内容存档于2021-01-10). 
  143. ^ 143.0 143.1 Russia to launch super-heavy rocket to Moon in 2032–2035. TASS. 2018-01-23 [2018-06-06]. (原始内容存档于2020-11-30). 
  144. ^ 144.0 144.1 144.2 144.3 Harbaugh, Jennifer. The Great Escape: SLS Provides Power for Missions to the Moon. NASA. 2018-07-09 [2018-09-04]. (原始内容存档于2019-12-11). 
  145. ^ Wehner, Mike. NASA Quietly Pushes Back Its SLS Launch Estimates to 2021. BGR. 2019-07-18 [2019-08-19]. (原始内容存档于2020-12-01). 
  146. ^ Space Launch System (PDF). NASA Facts. NASA. 2017-10-11 [2018-09-04]. FS-2017-09-92-MSFC. (原始内容存档 (PDF)于2018-12-24). 
  147. ^ Sloss, Philip. NASA updates Lunar Gateway plans. NASASpaceFlight.com. 2018-09-11 [2018-09-17]. (原始内容存档于2018-10-17). 
  148. ^ Creech, Stephen. NASA's Space Launch System: A Capability for Deep Space Exploration (PDF). NASA: 2. April 2014 [2018-09-04]. (原始内容存档 (PDF)于2016-03-07). 
  149. ^ 149.0 149.1 Krebs, Gunter. SS-520. Gunter's Space Page. [2017-11-05]. (原始内容存档于2017-07-22). 
  150. ^ Graham, William. Japanese sounding rocket claims record-breaking orbital launch. NASASpaceFlight. 2018-02-03 [2018-02-03]. (原始内容存档于2020-11-09). 
  151. ^ Experimental Launch of World's Smallest Orbital Space Rocket ends in Failure. Spaceflight 101. 2017-01-14 [2017-11-05]. (原始内容存档于2017-07-22). 
  152. ^ Krebs, Gunter. SSLV. Gunter's Space Page. [2018-08-16]. (原始内容存档于2020-10-27). 
  153. ^ Pietrobon, Steven. Indian Launch Manifest. 2018-08-15 [2018-08-16]. (原始内容存档于2019-04-02). 
  154. ^ 154.0 154.1 154.2 154.3 154.4 154.5 154.6 Starship. SpaceX. [2019-10-01]. (原始内容存档于2019-09-30). 
  155. ^ Starship Users Guide - starship_users_guide_v1.pdf (PDF). spacex.com. [2020-04-01]. (原始内容存档 (PDF)于2020-04-02). 
  156. ^ 156.0 156.1 UNITED STATES COMMERCIAL LAUNCH MANIFEST (7 Jan 2020). [2020-08-09]. (原始内容存档于2019-03-04). 
  157. ^ Terran. Relativity Space. [2019-10-05]. (原始内容存档于2020-11-22). 
  158. ^ Clark, Stephen. Relativity scores $140 million funding round for smallsat launcher. Spaceflight Now. 2019-10-03 [2019-10-05]. (原始内容存档于2020-09-30). 
  159. ^ Kwangmyongsong 3, 3-2 (KMS 3, 3-2). [2020-08-09]. (原始内容存档于2016-11-06). 
  160. ^ 160.0 160.1 Krebs, Gunter. Unha ("Taepodong-2"). Gunter's Space Page. [2016-12-20]. (原始内容存档于2012-04-10). 
  161. ^ Vega overview. Arianespace. [2018-06-07]. (原始内容存档于2020-12-02). 
  162. ^ Vega User's Manual (PDF). Issue 4. Arianespace: 2–10. April 2014 [2018-09-04]. (原始内容存档 (PDF)于2020-11-25). 
  163. ^ Krebs, Gunter. Vega. Gunter's Space Page. [2019-07-15]. (原始内容存档于2017-11-23). 
  164. ^ Vega C: Launcher. Avio. [2018-06-07]. (原始内容存档于2019-04-26). 
  165. ^ Henry, Caleb. Vega C debut slips to 2020. SpaceNews. 2019-03-11 [2019-08-10]. 
  166. ^ Vega E: M10 motor / Mira. Avio. [2018-06-07]. (原始内容存档于2019-04-19). 
  167. ^ Vega E. Avio. [2018-06-07]. (原始内容存档于2019-04-15). 
  168. ^ 168.0 168.1 168.2 Launch Vehicle. Skyroot Aerospace. 2019-01-10 [2019-04-21]. (原始内容存档于2020-12-15) (美国英语). 
  169. ^ Skyroot Aerospace. Skyroot Aerospace. [2019-04-21]. (原始内容存档于2019-02-05) (美国英语). 
  170. ^ Sukumar, C. R.; Krishnan, Raghu. With a simpler rocket, Skyroot is eyeing the space. The Economic Times. 2019-04-17 [2019-04-21]. (原始内容存档于2020-12-14). 
  171. ^ 171.0 171.1 171.2 171.3 171.4 Rocket Rundown – A Fleet Overview (PDF). ULA. November 2019 [2020-04-14]. (原始内容存档 (PDF)于2019-12-13). 
  172. ^ Foust, Jeff. ULA now planning first launch of Vulcan in 2021. SpaceNews. 2018-10-25 [2018-10-25]. (原始内容存档于2020-03-29). 
  173. ^ DeRoy, Rich S.; Reed, John G. Vulcan, ACES and beyond: providing launch services for tomorrow's spacecraft (PDF). Advances in the Astronautical Sciences (Univelt). February 2016, 157: 228 [2018-09-28]. AAS 16-052. (原始内容存档 (PDF)于2021-01-29). 
  174. ^ Everington, Keoni. Taiwan's upgraded 'Cloud Peak' missiles can reach Beijing. Taiwan News. 2018-01-25 [2018-02-10]. (原始内容存档于2018-01-30). 
  175. ^ Zak, Anatoly. The Yenisei super-heavy rocket. RussianSpaceWeb. 2019-02-19 [2019-02-20]. (原始内容存档于2021-01-28). 
  176. ^ Zak, Anatoly. Russia charts new roadmap to super-heavy rocket. Russian Space Web. 2017-11-24 [2018-06-06]. (原始内容存档于2020-11-09). 
  177. ^ 177.0 177.1 Zak, Anatoly. Russia Is Now Working on a Super Heavy Rocket of Its Own. Popular Mechanics. 2019-02-08 [2019-02-20]. (原始内容存档于2021-01-29). 
  178. ^ Werner, Debra. Japan's Interstellar Technologies goes full throttle toward small orbital rocket. SpaceNews. 2018-08-09 [2018-08-11]. 
  179. ^ Koizumi, Masumi. Japanese rocket pioneer Takafumi Horie says his firm Interstellar Technologies could soon take on SpaceX . The Japan Times. 2019-05-15 [2019-09-16]. (原始内容存档于2020-11-07). 
  180. ^ Jones, Andrew. Landspace of China to launch first rocket in Q4 2018. SpaceNews. 2018-08-02 [2018-08-16]. 
  181. ^ 181.0 181.1 Barbosa, Rui C. Chinese commercial provider LandSpace launches Weilai-1 on a Zhuque-1 rockets – fails to make orbit. NASASpaceFlight.com. 2018-10-27 [2018-10-27]. (原始内容存档于2020-11-09). 
  182. ^ Jones, Andrew. Commercial Chinese companies set sights on methalox rockets, first orbital launches. SpaceNews. 2018-07-10 [2018-08-16]. 
  183. ^ Curcio, Blaine; Lan, Tianyi. LandSpace Unveils Highly Ambitious New Rocket. Via Satellite. 2018-07-18 [2018-08-15]. (原始内容存档于2020-08-18). 
  184. ^ 184.00 184.01 184.02 184.03 184.04 184.05 184.06 184.07 184.08 184.09 184.10 184.11 184.12 184.13 184.14 184.15 184.16 184.17 Krebs, Gunter. Ariane-1, -2, -3, -4. Gunter's Space Page. [2 August 2011]. (原始内容存档于2012-07-27). 
  185. ^ Ariane 5. andegraf.com. [April 27, 2018]. (原始内容存档于2015-11-28). 
  186. ^ Final launch of Ariane 5 GS completes busy year / Launchers / Our Activities / ESA. European Space Agency. 2009-12-19 [2013-11-04]. (原始内容存档于2012-10-22). 
  187. ^ Welcome To ISRO :: Launch Vehicles. 印度太空研究组织. [2013-11-04]. (原始内容存档于2014-10-29). 
  188. ^ 188.0 188.1 Krebs, Gunter. SLV-3 / ASLV. Gunter's Space Page. [18 December 2016]. (原始内容存档于2021-01-15). 
  189. ^ Athena-1 (LLV-1 / LMLV-1). [2020-08-09]. (原始内容存档于2016-12-18). 
  190. ^ Athena-1. Astronautix.com. [2013-11-04]. (原始内容存档于2013-10-20).  |url-status=|dead-url=只需其一 (帮助)
  191. ^ NASA, Athena Mission Planner’s Guide 26 August 2012 (PDF). [2020-08-09]. (原始内容存档 (PDF)于2017-01-07). 
  192. ^ Athena-2. Astronautix.com. [2013-11-04]. (原始内容存档于2013-11-08).  |url-status=|dead-url=只需其一 (帮助)
  193. ^ Athena-2 (LLV-2 / LMLV-2). [2020-08-09]. (原始内容存档于2013-09-05). 
  194. ^ Atlas Centaur LV-3C Development. [2020-08-09]. (原始内容存档于2016-12-20). 
  195. ^ Atlas Centaur. [2020-08-09]. (原始内容存档于2016-12-24). 
  196. ^ 196.00 196.01 196.02 196.03 196.04 196.05 196.06 196.07 196.08 196.09 196.10 196.11 196.12 196.13 196.14 196.15 196.16 196.17 196.18 196.19 196.20 196.21 196.22 Krebs, Gunter. Atlas Centaur. Gunter's Space Page. [1 August 2011]. (原始内容存档于2016-12-24). 
  197. ^ astronautix.com, Atlas H. [2020-08-09]. (原始内容存档于2016-12-20). 
  198. ^ astronautix.com, Atlas IIIB. [2020-08-09]. (原始内容存档于2002-05-01). 
  199. ^ Encyclopedia Astronautica, Black Arrow. [2020-08-09]. (原始内容存档于2007-12-06). 
  200. ^ astronautix.com, Titan III. [2020-08-09]. (原始内容存档于2014-12-25). 
  201. ^ WMO OSCAR – Satellite: NOAA-3. [2020-08-09]. (原始内容存档于2017-03-24). 
  202. ^ NASA – NSSDCA – Spacecraft – Details. [2020-08-09]. (原始内容存档于2020-07-28). 
  203. ^ 203.00 203.01 203.02 203.03 203.04 203.05 203.06 203.07 203.08 203.09 203.10 203.11 203.12 203.13 203.14 203.15 203.16 203.17 203.18 203.19 203.20 203.21 203.22 203.23 203.24 203.25 203.26 203.27 203.28 203.29 203.30 203.31 203.32 203.33 203.34 203.35 203.36 203.37 203.38 203.39 203.40 203.41 203.42 203.43 203.44 203.45 203.46 203.47 203.48 203.49 203.50 203.51 203.52 Krebs, Gunter. Delta. Gunter's Space Page. [16 September 2018]. (原始内容存档于2011-08-02). 
  204. ^ Wade, Mark. Delta 0300. Encyclopedia Astronautica. [2 August 2011]. (原始内容存档于2011-10-11).  |url-status=|dead-url=只需其一 (帮助)
  205. ^ Wade, Mark. Delta 0900. Encyclopedia Astronautica. [2 August 2011]. (原始内容存档于2011-10-11).  |url-status=|dead-url=只需其一 (帮助)
  206. ^ GEOS 3. [2020-08-09]. (原始内容存档于2016-10-18). 
  207. ^ 1972 – 2616 – Flight Archive. [2020-08-09]. (原始内容存档于2016-12-23). 
  208. ^ OSO 8. [2020-08-09]. (原始内容存档于2016-10-18). 
  209. ^ Explorer: RAE B. [2020-08-09]. (原始内容存档于2017-11-07). 
  210. ^ Delta-1914. [2020-08-09]. (原始内容存档于2016-10-18). 
  211. ^ NASA – NSSDCA – Spacecraft – Details. [2020-08-09]. (原始内容存档于2020-08-07). 
  212. ^ Skynet 2A, 2B. [2020-08-09]. (原始内容存档于2016-10-18). 
  213. ^ 213.0 213.1 Wade, Mark. Delta 2913. Encyclopedia Astronautica. [2 August 2011]. (原始内容存档于2011-10-11).  |url-status=|dead-url=只需其一 (帮助)
  214. ^ Explorer: DE 1, 2. [2020-08-09]. (原始内容存档于2016-10-18). 
  215. ^ Wade, Mark. Delta 4000. Encyclopedia Astronautica. [2 August 2011]. (原始内容存档于2011-10-11).  |url-status=|dead-url=只需其一 (帮助)
  216. ^ Wade, Mark. Delta 5000. Encyclopedia Astronautica. [2 August 2011]. (原始内容存档于2011-10-11).  |url-status=|dead-url=只需其一 (帮助)
  217. ^ Aura / Signe 3 (D 2B). [2020-08-09]. (原始内容存档于2016-10-18). 
  218. ^ Space Skyrocket, Diamant页面存档备份,存于互联网档案馆), retrieved 19 December 2015
  219. ^ 219.0 219.1 Krebs, Gunter. Dnepr. Gunter's Space Page. [18 December 2016]. (原始内容存档于2015-02-19). 
  220. ^ Clark, Stephen. Iridium satellites closed up for launch on Falcon 9 rocket. Spaceflight Now. 30 December 2016 [30 December 2016]. (原始内容存档于2017-02-19). Russian officials have said they plan to discontinue Dnepr launches. 
  221. ^ 221.0 221.1 221.2 221.3 S.P.Korolev RSC Energia – LAUNCHERS. Energia. [2020-08-09]. (原始内容存档于2017-07-07). 
  222. ^ Wade, Mark. Energia. Encyclopedia Astronautica. [9 August 2010]. (原始内容存档于2011-10-11).  |url-status=|dead-url=只需其一 (帮助)
  223. ^ 223.0 223.1 Krebs, Gunter. Falcon-1. Gunter's Space Page. [18 December 2016]. (原始内容存档于2016-12-22). 
  224. ^ 224.0 224.1 Falcon 9 Overview. SpaceX. 2011 [2011-12-01]. (原始内容存档于2012-01-18).  |url-status=|dead-url=只需其一 (帮助)
  225. ^ 225.0 225.1 Krebs, Gunter. Falcon-9. Gunter's Space Page. [24 May 2018]. (原始内容存档于2015-05-03). 
  226. ^ 226.0 226.1 Falcon 9. SpaceX. 2012-11-16 [2020-08-09]. (原始内容存档于2014-08-05). 
  227. ^ Feng Bao 1, part of CZ family. [2020-08-09]. (原始内容存档于2020-01-24). 
  228. ^ Krebs, Gunter. FB-1 (Feng Bao-1). Gunter's Space Page. [17 August 2018]. (原始内容存档于2021-01-27). 
  229. ^ 229.0 229.1 229.2 229.3 229.4 Krebs, Gunter. GSLV. Gunter's Space Page. [18 December 2016]. (原始内容存档于2014-10-06). 
  230. ^ JERS (Fuyo). [2020-08-09]. (原始内容存档于2016-10-17). 
  231. ^ astronautix.com, H-2. [2020-08-09]. (原始内容存档于2008-07-06). 
  232. ^ 232.0 232.1 Krebs, Gunter. H-2. Gunter's Space Page. [1 August 2011]. (原始内容存档于2011-10-05). 
  233. ^ astronautix.com H-IIA 2024. [2020-08-09]. (原始内容存档于2011-10-11). 
  234. ^ Krebs, Gunter. H-2B. Gunter's Space Page. [24 September 2019]. (原始内容存档于2017-06-25). 
  235. ^ 235.0 235.1 235.2 235.3 235.4 235.5 235.6 235.7 NISSAN HERITAGE COLLECTION online【その他】プリンス自動車工業小史. 日产. [8 March 2011]. (原始内容存档于2016-11-09). 
  236. ^ JAXA – J-I Launch Vehicle. [2020-08-09]. (原始内容存档于2016-06-11). 
  237. ^ astronautix.com Kaituozhe-1, also called KY-1. [2020-08-09]. (原始内容存档于2008-05-12). 
  238. ^ Cosmos-1, 3, 3M and 3MU – SL-8 – C-1. [2020-08-09]. (原始内容存档于2016-04-10). 
  239. ^ Kosmos-3M (11K65M). [2015-12-21]. (原始内容存档于2013-06-02).  |url-status=|dead-url=只需其一 (帮助)
  240. ^ 240.0 240.1 240.2 240.3 240.4 240.5 240.6 Satellite Launch Vehicles. Institute of Space and Astronautical Science (ISAS). [4 March 2011]. (原始内容存档于2011-05-17). 
  241. ^ astronautix.com, Long March 1, also called CZ-1. [2020-08-09]. (原始内容存档于2016-08-31). 
  242. ^ 242.0 242.1 Krebs, Gunter. CZ-1 (Chang Zheng-1). Gunter's Space Page. [12 February 2014]. (原始内容存档于2014-02-21). 
  243. ^ astronautix.com, Long March 1D (CZ-1D). [2020-08-09]. (原始内容存档于2013-12-30). 
  244. ^ astronautix.com Long March 2A – CZ-2A. [2020-08-09]. (原始内容存档于2008-05-16). 
  245. ^ astronautix.com, Encyclopedia Astronautica, Molniya 8K78M. [2020-08-09]. (原始内容存档于2012-05-08). 
  246. ^ Krebs, Gunter. Molniya (8K78). Gunter's Space Page. [18 December 2016]. (原始内容存档于2020-08-01). 
  247. ^ US-K (73D6). [2020-08-09]. (原始内容存档于2013-05-16). 
  248. ^ Krebs, Gunter. Molniya and Soyuz with upper stages. Gunter's Space Page. [18 December 2016]. (原始内容存档于2016-11-25). 
  249. ^ Complex N1-L3. Energia.ru. [2013-11-04]. (原始内容存档于2016-10-30). 
  250. ^ L3. Astronautix.com. [2013-11-04]. (原始内容存档于2012-12-01).  |url-status=|dead-url=只需其一 (帮助)
  251. ^ RSC "Energia" – History. Energia.ru. 2011-04-12 [2013-11-04]. (原始内容存档于2016-10-30). 
  252. ^ Wade, Mark. N1. Encyclopedia Astronautica. [9 August 2010]. (原始内容存档于2012-02-21). 
  253. ^ astronautix.com, N-I- Delta. [2020-08-09]. (原始内容存档于2008-07-24). 
  254. ^ astronautix.com, Encyclopedia Astronautica, N-2. [2020-08-09]. (原始内容存档于2013-11-08). 
  255. ^ STSAT 2C. [2020-08-09]. (原始内容存档于2013-02-06). 
  256. ^ LePage, Andrew J. NOTSNIK: The Navy's Secret Satellite Program. Spaceviews. July 1998 [2009-01-17]. (原始内容存档于2003-05-21).  |url-status=|dead-url=只需其一 (帮助)
  257. ^ Korea, By Christoph Bluth,
  258. ^ Encyclopedia Astronautica, Proton-K. [2020-08-09]. (原始内容存档于2016-10-21). 
  259. ^ Launch Vehicles. [2020-08-09]. (原始内容存档于2015-11-06). 
  260. ^ Proton. Astronautix.com. [2013-11-04]. (原始内容存档于2016-03-03). 
  261. ^ Outcome Budget 2016–2017 (PDF). Government of India, Department of Space. 2016 [15 September 2018]. (原始内容存档 (PDF)于2017-06-25). Currently, two versions of PSLV are operational, namely PSLV-XL (with six extended version of Strap-on motors) and the PSLV Core-alone (without Strap-on motors). 
  262. ^ 262.0 262.1 Krebs, Gunter. Rokot (Rockot). Gunter's Space Page. [31 August 2019]. (原始内容存档于2020-12-02). 
  263. ^ astronautix.com, Saturn I. [2020-08-09]. (原始内容存档于2010-12-07). 
  264. ^ 264.0 264.1 Saturn-1 & Saturn-1B. Space.skyrocket.de. [2013-11-04]. (原始内容存档于2016-11-27). 
  265. ^ Encyclopedia Astronautica, Saturn IB. [2020-08-09]. (原始内容存档于2011-05-14). 
  266. ^ Bilstein, Roger E. Appendix C: Saturn Family/Mission Data. Stages to Saturn A Technological History of the Apollo/Saturn Launch Vehicles. NASA History Office. [7 April 2011]. (原始内容存档于2020-09-22). 
  267. ^ Alternatives for Future U.S. Space-Launch Capabilities (PDF), The Congress of the United States. Congressional Budget Office: X,1, 4, 9, October 2006 [2020-08-09], (原始内容存档于2021-10-01) 
  268. ^ Thomas P. Stafford, America at the Threshold – Report of the Synthesis Group on America's Space Exploration Initiative: 31, 1991 
  269. ^ Rocket and Space Technology. Braeunig.us. [2013-11-04]. (原始内容存档于2016-04-09). 
  270. ^ Alan Lawrie and Robert Godwin, Saturn页面存档备份,存于互联网档案馆), 2005 (paperback, Apogee Books Space Series, 2010), ISBN 1-894959-19-1
  271. ^ John Duncan, Saturn V Flight History页面存档备份,存于互联网档案馆) (1999), web page (accessed 20 August 2010)
  272. ^ NASA – Scout Launch Vehicle Program. [2020-08-09]. (原始内容存档于2016-11-10). 
  273. ^ 273.0 273.1 273.2 273.3 Vysota / Volna / Shtil. [2014-12-23]. (原始内容存档于2016-12-24). 
  274. ^ 274.0 274.1 274.2 SLV-3. [13 February 2014]. (原始内容存档于2014-02-21). 
  275. ^ Krebs, Gunter. Soyuz (11A511). Gunter's Space Page. [20 December 2016]. (原始内容存档于2013-05-17). 
  276. ^ Soyuz-FG Launch Vehicle. Progress Rocket Space Centre. [16 May 2015]. (原始内容存档于2016-08-12). 
  277. ^ Krebs, Gunter. Soyuz-FG (11A511U-FG). Gunter's Space Page. [25 September 2019]. (原始内容存档于2020-08-01). 
  278. ^ Krebs, Gunter. Soyuz-L (11A511L). Gunter's Space Page. [20 December 2016]. (原始内容存档于2013-06-28). 
  279. ^ Krebs, Gunter. Soyuz-M (11A511M). Gunter's Space Page. [20 December 2016]. (原始内容存档于2017-11-23). 
  280. ^ 280.0 280.1 Soyuz-U Launch Vehicle. JSC "RCC" Progress. [16 May 2015]. (原始内容存档于2016-08-12). 
  281. ^ Krebs, Gunter. Soyuz-U (11A511U). Gunter's Space Page. [20 December 2016]. (原始内容存档于2019-09-16). 
  282. ^ Krebs, Gunter. Soyuz-U2 (11A511U2). Gunter's Space Page. [20 December 2016]. (原始内容存档于2019-09-16). 
  283. ^ 283.0 283.1 Krebs, Gunter. Shuttle (STS). Gunter's Space Page. [14 July 2014]. (原始内容存档于2014-08-10). 
  284. ^ SPACE TRANSPORTATION SYSTEM PAYLOADS. Kennedy Space Center. 2000 [14 July 2014]. (原始内容存档于2014-07-17). 
  285. ^ NASA – Space Shuttle. NASA. [2012-07-25]. (原始内容存档于2011-07-26). 
  286. ^ Sputnik 2 (PS-2 #1). [2020-08-09]. (原始内容存档于2016-10-30). 
  287. ^ EROS B. [2020-08-09]. (原始内容存档于2013-01-14). 
  288. ^ Start-1. [2020-08-09]. (原始内容存档于2016-12-30). 
  289. ^ Strela launcher. [2020-08-09]. (原始内容存档于2017-07-30). 
  290. ^ Strela. Gunter's Space Page. [23 Dec 2014]. (原始内容存档于2014-10-25). 
  291. ^ astronautix.com, Titan II GLV. [2020-08-09]. (原始内容存档于2016-02-28). 
  292. ^ astronautix.com, Titan 23G. [2020-08-09]. (原始内容存档于2016-03-04). 
  293. ^ Encyclopedia Astronautica, Titan 3A. [2020-08-09]. (原始内容存档于2008-03-07). 
  294. ^ Encyclopedia Astronautica, Titan 3B. [2020-08-09]. (原始内容存档于2012-10-25). 
  295. ^ astronautix.com, Titan IIIC. [2020-08-09]. (原始内容存档于2014-12-25). 
  296. ^ astronautix.com, Titan IIID. [2020-08-09]. (原始内容存档于2016-03-04). 
  297. ^ astronautix.com, Titan IIIE. [2020-08-09]. (原始内容存档于2015-12-02). 
  298. ^ astronautix.com, Titan 34D. [2020-08-09]. (原始内容存档于2008-06-30). 
  299. ^ 299.0 299.1 299.2 299.3 Titan-4. Space.skyrocket.de. [2013-11-04]. (原始内容存档于2014-07-14). 
  300. ^ 300.0 300.1 Fact Sheet – TITAN IVB. United States Air Force. [2007-11-12]. (原始内容存档于2011-02-24). 
  301. ^ astronautix.com, Tsyklon-2A. [2020-08-09]. (原始内容存档于2013-05-22). 
  302. ^ Tsiklon-2A (11K67). Space.skyrocket.de. [2013-11-04]. (原始内容存档于2016-11-06). 
  303. ^ astronautix.com, Tsyklon-2. [2020-08-09]. (原始内容存档于2013-05-22). 
  304. ^ 304.0 304.1 Tsiklon-2 (11K69). Space.skyrocket.de. [2013-11-04]. (原始内容存档于2016-12-09). 
  305. ^ nasaspaceflight.com, Tsyklon-3. [2020-08-09]. (原始内容存档于2009-02-02). 
  306. ^ 306.0 306.1 Tsiklon-3 (11K68). Space.skyrocket.de. [2013-11-04]. (原始内容存档于2016-11-17). 
  307. ^ astronautix.com, vanguard. [2020-08-09]. (原始内容存档于2013-10-30). 
  308. ^ Vector Space Systems Will Launch Microsatellite Rockets from Florida. [28 March 2017]. (原始内容存档于2020-11-12). 
  309. ^ VLS. [2020-08-09]. (原始内容存档于2016-10-22). 
  310. ^ IRDT 1, 2, 2R. [2020-08-09]. (原始内容存档于2016-10-26). 
  311. ^ Handbook of Space Engineering, Archaeology, and Heritage by Ann Darrin, Beth L. O'Leary, page 116
  312. ^ NASA – NSSDCA – Spacecraft – Details. [2020-08-09]. (原始内容存档于2019-08-25). 
  313. ^ 313.0 313.1 Spacecraft – Vostok. [2020-08-09]. (原始内容存档于2016-10-26). 
  314. ^ Meteor-2 (11F632). [2020-08-09]. (原始内容存档于2016-11-25). 
  315. ^ astronautix.com, Soyuz/Vostok. [2020-08-09]. (原始内容存档于2010-01-07). 
  316. ^ 316.0 316.1 Ed Kyle. Zenit Data Sheet. Spacelaunchreport.com. [2013-11-04]. (原始内容存档于2016-05-03). 
  317. ^ 317.0 317.1 Krebs, Gunter. Zenit-2. Gunter's Space Pages. [20 December 2016]. (原始内容存档于2020-08-01). 
  318. ^ Zenit launch vehicle. Russianspaceweb.com. [2013-11-04]. (原始内容存档于2016-04-16). 
  319. ^ Elektro-L 1, 2, 3. [2020-08-09]. (原始内容存档于2016-12-17). 
  320. ^ 320.0 320.1 320.2 320.3 320.4 Krebs, Gunter. Zenit-3. Gunter's Space Page. [28 December 2017]. (原始内容存档于2016-11-15).