马丁公理
在数学的集合论中,马丁公理(Martin's axiom)是一个由唐纳德·A·马丁和罗伯特·M·梭罗维引进的[1]公理,这公理独立于惯常的、带有选择公理的策梅洛-弗兰克尔集合论(ZFC)。这公理在连续统假设成立的状况下成立,但也与否定连续统假设的ZFC公理系统相容。
用较不正式的讲法,马丁公理讲的是任何小于连续统的基数,其行为会与大体类似。这公理背后的想法可借由研究罗修娃-西葛斯基引理的证明得知;而这是用以控制特定力迫论证的其中一个原则。
陈述
编辑给定任意的基数 ,我们可以定义一个如下的陈述,并将这陈述给记做 :
对于任意满足可数链条件的偏序 及任意 的稠密集的集族 而言,若 ,则存在一个 上的滤子 ,使得对于任意的 而言, 非空。
由于这是一个使得 不成立的ZFC定理之故,因此马丁公理可表述如下:
马丁公理(MA):对于任意的 , 成立
在这情况(应用可数链条件)下,一个反链 是 的子集,且这子集使得 的任意两个元素不兼容(若在偏序中存在一个低于两者的共通元素,则说两个元素是兼容的),而这与树等情况下的反链是不同的。
为真,而这即是罗修娃-西葛斯基引理。
为假: 是一个紧致豪斯多夫空间,因此是个可分空间并满足可数链条件。这集合没有孤立点,因此其中的点是无处稠密的;但这集合是 这么多的点的联集。(也可参见下述的与 等价的条件)
与等价的陈述
编辑以下陈述与 等价:
结果
编辑马丁公理在组合数学、数学分析跟拓朴学上有许多有其他有趣的结果:
- 在波兰空间上的无原子σ-有限博雷尔测度中, 个或更少的零测集依旧是零测集;不仅如此,实数集的 个或更少的勒贝格测度为零的子集的联集,其勒贝格测度为零。
- 对于一个紧致豪斯多夫空间 而言,若 ,则这空间是序列紧致的,也就是说这空间中的每个序列都有一个收敛子序列。
- 在 上,没有任何非主要的超滤子的基本基数会小于 。
- 等价地,对于任意的 ,有 ,此处的 是 的特征,因此 。
- 蕴含说满足可数链条件的拓朴空间的乘积依旧满足可数链条件,而这结果又蕴含说苏斯林线不存在。
- 若马丁公理成立,而连续统假设不成立,那就表示存在有非自由的怀特海群(Whitehead group);细拉用这结果证明说怀特海问题独立于ZFC。
后续发展
编辑参考资料
编辑- ^ Martin, Donald A.; Solovay, Robert M. Internal Cohen extensions. Ann. Math. Logic. 1970, 2 (2): 143–178. MR 0270904. doi:10.1016/0003-4843(70)90009-4 .
- ^ Davis, Sheldon W. Topology. McGraw Hill. 2005: 29. ISBN 0-07-291006-2.
延伸阅读
编辑- Fremlin, David H. Consequences of Martin's axiom. Cambridge tracts in mathematics, no. 84. Cambridge: Cambridge University Press. 1984. ISBN 0-521-25091-9.
- Jech, Thomas, 2003. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3-540-44085-2.
- Kunen, Kenneth, 1980. Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.