克莱因-戈尔登方程

(重定向自Klein-Gordon场论

克莱因-戈尔登方程(英语:Klein-Gordon equation)是相对论量子力学量子场论中的最基本方程,它是薛定谔方程狭义相对论形式,用于描述自旋为零的粒子。克莱因-戈尔登方程是由瑞典理论物理学家奥斯卡·克莱因德国沃尔特·戈尔登英语Walter Gordon (physicist)二十世纪二三十年代分别独立推导得出的。

陈述

编辑

克莱因-戈尔登方程为

 

很多时候会用自然单位c=ħ=1)写成

 

由于平面波为此方程已知的一组解,所以方程形式由它决定:

 

遵从狭义相对论的能量动量关系式

 

跟薛定谔方式不同,每一个k在此都对应着两个 ,只有通过把频率的正负部分分开,才能让方程描述到整个相对论形式的波函数。若方程在时间流逝下不变,则其形式为

 

相对论量子力学下的形式推导

编辑

自由粒子的薛定谔方程是非相对论量子力学的最基本方程:

 

其中 动量算符。

薛定谔方程并非相对论协变的,意味着它不满足爱因斯坦狭义相对论

利用狭义相对论中的相对论能量公式   替换薛定谔方程左边的动能 项,最终可得它的协变形式:

 

其中 达朗贝尔算符 .

从相对论量子力学的观点来看,达朗贝尔算符的出现意味着克莱因-戈尔登方程是一个量子力学的波方程

量子场论下的形式推导

编辑

场论中,对于自旋为零的场(标量场),拉格朗日量被写成

 

这里依照量子场论的习惯选取了自然单位,将光速 和普朗克常数 都取作1。

代入欧拉-拉格朗日方程 可直接得到克莱因-戈尔登方程。

从量子场论的观点来看,以上推导过程都在经典场论的范围之内,因此克莱因-戈尔登方程只是一个经典场的场方程

自由粒子解

编辑

相对论量子力学中自由粒子只是一个理想化的概念,但形如克莱因-戈尔登方程这样的波方程仍然具有形式上的平面波解:

 

其中 

从克莱因-戈尔登方程得出的能量本征值

 

因而克莱因-戈尔登方程的解包含了负能量。同时,由这个解导出相应的概率密度也不能保证是正值。这两个问题使得克莱因-戈尔登方程在很长一段时间里被认为是缺乏物理意义的。英国物理学家保罗·狄拉克为了确保概率密度具有物理意义建立了狄拉克方程,但这个方程仍然没有避免出现负能量。

行波解

编辑

克莱因-戈尔登方程有行波解[1]

参见

编辑

参考资料

编辑
  1. ^ 83.Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple p64-72 Springer

参考文献

编辑