模块:BigNumber/sandbox
这是Module:BigNumber(差异)的沙盒。 |
此模块沙盒被引用于许多页面。 为了避免造成大规模的影响,所有对此模块沙盒的编辑应先于沙盒或测试样例上测试。 测试后无误的版本可以一次性地加入此模块沙盒中,但是修改前请务必于讨论页发起讨论。 模板引用数量会自动更新。 |
以百万进制运作的大数运算系统(或称高精度计算)。当中也包含了大数运算进制变换系统。目前支持加法、减法、乘法、除法与整数幂次。
使用方法
编辑Lua
编辑- .bigint("bignumber", base)
- 以一个指定底数的字符串初始化一个大数。底数默认值为10。底数可接受的值与.convertBase函数相同。
- 参数:
- bignumber(大数):要初始化的大数。若未输入则默认为0。
- base(输入的底数):输入值的进位制,默认为10。(参见.convertBase函数的
from
参数)
- 例如:
local bigint = require('Module:BigNumber') print(bigint.bigint("425731578351266") * bigint.bigint("948700000017358"))
- 输出:403891548389235902937021275228
- 参数:
- 这个函数会返回一个bigint对象。每个bigint都可以互相进行加法、减法、乘法、除法和乘幂运算(乘幂运算的指数不能是bigint对象)
- 每个bigint对象有以下成员函数可供使用:
- bigint对象:equal(other)
- 比较两个bigint对象的值是否相等
- 参数:
- other:要和自身比较的另一个数,可以是数字或其他bigint对象
- 参数:
- 比较两个bigint对象的值是否相等
- bigint对象:less(other)
- 比较bigint对象的值是否小于other的值
- 参数:
- other:要和自身比较的另一个数,可以是数字或其他bigint对象
- 参数:
- 比较bigint对象的值是否小于other的值
- bigint对象:lessequal(other)
- 比较bigint对象的值是否小于等于other的值
- 参数:
- other:要和自身比较的另一个数,可以是数字或其他bigint对象
- 参数:
- 比较bigint对象的值是否小于等于other的值
- bigint对象:clone()
- 制作bigint对象的副本
- bigint对象:divsmall(other)
- 计算bigint对象与一般数字相除的商
- 参数:
- other:被除数。只能是数字,不可以是bigint对象
- 参数:
- 计算bigint对象与一般数字相除的商
- bigint对象:inverse(precision)
- 计算bigint对象所代表的值之倒数
- 参数:
- precision:运算精度
- 参数:
- 计算bigint对象所代表的值之倒数
- bigint对象:length()
- 获取这个bigint对象的位数(含非整数部分)。可用于计算倒数时的精度位数
- bigint对象:intlength()
- 获取这个bigint对象整数部分的位数
- bigint对象:equal(other)
- .bigintmath
- 提供支持bigint对象的math函数库。
- 使用方法
- 使用
.bigintmath
前须先调用.bigintmath.init()
初始化方能使用当中的各项函数 - 例如:
local bigint = require('Module:BigNumber') local mymath = bigint.bigintmath.init() print(mymath.abs("-12345"))
- 输出:12345
- 使用
- 成员函数
- init(base):初始化bigint的math函数库
- 三角函数(
sin
、cos
、tan
、cot
、sinh
、cosh
、tanh
、coth
、asin
、acos
、atan
、atan2
、acot
、asinh
、acosh
、atanh
、acoth
) - deg(x):弧度转角度
- rad(x):角度转弧度
- e:数学常量e
- pi:数学常量圆周率
- huge:无穷大
- abs(x):取绝对值
- sgn(x):取符号函数
- floor(x):取向下取整
- ceil(x):取向上取整
- div(x,y):除法,
x / y
- inverse(x):取倒数,小数点16位精度
- digits(x):获取整数的位数
- sqrt(x):使用牛顿法以大数运算计算平方根,过大的数字可能会需要较长的计算时间
- modf(x):将一数拆成整数部分与小数部分
- fmod(x,y):计算x除以y的余数,商向零取整
- exp(x):计算
- frexp(x):将x表达为,回传m和e
- ldexp(m, e):计算
- pow(x,y):计算
- log(x):计算(直接调用math函数库的函数)
- log(a,x):计算(直接调用math函数库的函数)
- log10(x):计算
- factorial(x):计算
- max(x0,x1,x2,...):获取一系列数字的最大值
- min(x0,x1,x2,...):获取一系列数字的最小值
- random(a,b):取[a,b]之间的随机数。若b未输入则取[1,a]之间的随机数。若皆未输入则取[0,1)之间的随机数。
- .convertBase("number", base, from, width, precision, sub)
- 将特定进位制的数字转成以另一个进位制表示。在本模块中用于大数输入输出。本函数可模板调用。
- 参数:
- number(数字):(必填)须变换的数字,以字符串形式输入。十进制的数字可直接以数字形式输入,但需注意过大的数字若以数字的形式输入可能会丢失精度,应视情况换用字符串输入。
- base(目标底数):目标进位制,可取任意绝对值介于1到9007199254740900之间的所有实数(含负数)、纯虚数和高斯整数,可接受非整数的底数,如进制。支持特殊进制:“!”表示阶乘进制、“fibcode”表示斐波那契编码。默认为10。
- from(原始底数):输入值的进位制,可取绝对值小于9007199254740900的任意复数,默认为10(如果输入的数字以“0x”开头,则默认为16)。
- width(位数补齐):小数点前至少显示的位数,达不到时会加“0”。
- precision(小数计算最大位数):小数点后的位数,达不到时会加“0”。不填该项会显示所有位数,但不超过20位数。
- sub(输出模式):见Template:进制/doc#sub的值。
- prefix:加在输出值前的维基代码。number为空时则不加。例如在变换到十六进制后在前面加上
0x
。 - suffix:加在输出值后的维基代码。number为空时则不加。例如在变换到八进制后在后面加上
<sub>8</sub>
。
- 例如:
- 由于模块本身是大数运算系统,因此若数字过大失去精度的话可以考虑改成以字符串输入:
bigint.convertBase(123456789123456789)
→123456789123460000bigint.convertBase("123456789123456789")
→123456789123456789
- 参数:
- ._FFT(re, im, length, ifft)
- 执行快速傅里叶变换。在本模块中用于大数乘法。
模板
编辑搭配{{计算}}使用,仅需将|number class=
参数指定为Module:BigNumber.bigintmath
即可调用大数运算相关函数。
{{計算|2^64 | number class=Module:BigNumber.bigintmath}}
{{計算|425731578351266 * 948700000017358 | number class=Module:BigNumber.bigintmath}}
{{計算|factorial(70) | number class=Module:BigNumber.bigintmath}}
- →11978571669969891796072783721689098736458938142546425857555362864628009582789845319680000000000000000
- 对比
{{計算|factorial(70) }}
→1.197857166997e+100
- 对比
- →11978571669969891796072783721689098736458938142546425857555362864628009582789845319680000000000000000
注意事项
编辑虽然大数运算系统(或称高精度计算)理论上无计算上的上限,但考虑到维基百科服务器有限制脚本运作时间为10秒(见WP:模板限制)因此也不能运算过大的数;此外幂次的运算是使用传统的一次一次相乘的方法,因此过大的指数也可能导致超过模板运算上限。虽然目前乘法算法已使用傅里叶变换进行加速,但使用此模块时仍应留意性能。
此外,本模块主要是设计给整数的大数运算(Big Integer),但有保留小数运算的能力,尤其是运算除法不整除时,多次的除法会导致小数字数的增长,因而导致计算时间增加,因此若需要做多次除法建议取整,可使用number:setpoint(0)
或.bigintmath.floor(number)
(搭配{{计算}}时使用floor(number)
)来清除小数。
参见
编辑local p={}
local getArgs = require('Module:Arguments').getArgs
local yesno = require('Module:Yesno')
local lib_calc = require('Module:Complex_Number/Calculate')
local lib_solve = require("Module:Complex_Number/Solver")
local lib_fact = {} --Module:Factorization
local lib_bit=require('bit32');
local bit={lS=lib_bit.lshift,rS=lib_bit.rshift,Or=lib_bit.bor,And=lib_bit.band}
local utils = require('Module:BigNumber/utils/sandbox')
--大數運算的Metatable
p.bigintMeta = {
__add = function (op_1, op_2) --大數加法。如被加數或加數有負值則為大數減法
local op1, op2 = p.bigint(op_1):clone(), p.bigint(op_2):clone()
--處理NaN及Inf
if op1.isNaN or op2.isNaN then return op1.isNaN and op1:clone() or op2:clone() end
if op1.isInf or op2.isInf then
if op1.isInf and op2.isInf and (op1.sign ~= op2.sign) then return p.bigint():nan() end
local result = p.bigint():inf()
result.sign = op1.isInf and op1.sign or op2.sign
return result
end
local result = p.bigint()
--位數對齊
if op1.point > op2.point then op2:setpoint(op1.point)
elseif op1.point < op2.point then op1:setpoint(op2.point)end
result.point = op1.point
--計算位數為原始位數+1 (如果進位的話)
local length = math.max(op1:length(), op2:length()) + 1
local carry = 0 --進位/借位
for i = 1,length-1 do
--該位數相加
local digit = op1.sign * op1:atl(i) + op2.sign * op2:atl(i) + carry
--超過底數代表進位
if digit >= op1.base then
carry = 1
digit = digit - op1.base
--低於0則需借位
elseif digit < 0 then
carry = -1
digit = digit + op1.base
else
carry = 0
end
result:setl(i, digit)
end
--仍有未處理的進位/借位
if carry > 0 then
result:setl(length, carry)
elseif carry < 0 then
--最高位仍有借位代表結果為負
result.sign = -1
carry = 0
--全體取補數
for i = 1,length-1 do
local digit = op1.base - result:atl(i) + carry
carry = -1
result:setl(i, digit)
end
end
--清除前導零
if not (op1.nodelzero or op2.nodelzero) then result:delzero() end
result.isNaN = op1.isNaN or op2.isNaN
return result
end,
__sub = function (op_1, op_2) --大數減法 轉為加法 (減數取相反數)
local op1, op2 = p.bigint(op_1):clone(), p.bigint(op_2):clone()
op2.sign = op2.sign * -1 --減數取相反數
return op1 + op2
end,
__mul = function (op_1, op_2) --大數乘法 使用FFT加速
local op1, op2 = p.bigint(op_1), p.bigint(op_2)
--處理NaN及Inf
if op1.isNaN or op2.isNaN then return op1.isNaN and op1:clone() or op2:clone() end
if op1.isInf or op2.isInf then
local result = p.bigint():inf()
result.sign = op1.sign * op2.sign
return result
end
local op1_iszero, op2_iszero = op1:equal(0), op2:equal(0)
local result = p.bigint()
if op1.isInf or op2.isInf then
result:inf()
result.sing = op1.sing * op2.sing
return result
end
local a_sign, b_sign = op1.sign, op2.sign
local a_is_zero, b_is_zero = true, true
local res,rea,ina,reb,inb,ret,intt = {0},{0},{0},{0},{0},{0},{0}
local len1,len2,lent,lenres,_len;
local s1, s2 = tostring(in1), tostring(in2)
len1 = op1:length(); len2 = op2:length();
if len1 > len2 then lent = len1 else lent = len2 end; _len=1
while _len < lent do _len = bit.lS(_len,1) end _len = bit.lS(_len,1)
--填入FFT序列
for i = 0,_len-1 do
if i < len1 then rea[i+1] = op1.data[len1-i] end
if i < len2 then reb[i+1] = op2.data[len2-i] end
a_is_zero = a_is_zero and (rea[i+1]or 0) < 1e-14
b_is_zero = b_is_zero and (reb[i+1]or 0) < 1e-14
ina[i+1],inb[i+1] = 0,0;
end
--乘法正負號結果為兩者正負號相乘
local res_sign = a_sign * b_sign
--若被乘數或乘數為零則結果為零
if a_is_zero or b_is_zero then
local _zero = p.bigint()
_zero.sign = res_sign < 0 and -1 or 1
return _zero
end
--執行FFT
p._FFT(rea,ina,_len,false); p._FFT(reb,inb,_len,false);
--執行捲積
for i=0,_len-1 do
local rec = rea[i+1] * reb[i+1] - ina[i+1] * inb[i+1];
local inc = rea[i+1] * inb[i+1] + ina[i+1] * reb[i+1];
rea[i+1] = rec; ina[i+1] = inc;
end
--執行逆FFT
p._FFT(rea,ina,_len,true);--ifft
for i=0,_len-1 do rea[i+1] = rea[i+1] / _len; ina[i+1] = ina[i+1] / _len end
for i=0,_len-1 do res[i+1] = math.floor(rea[i+1] + 0.5)end
for i=0,_len-1 do res[i+2] = (res[i+2]or 0) + math.floor((res[i+1]or 0) / op1.base) ; res[i+1] = (res[i+1]or 0) % op1.base end
lenres = len1 + len2 + 2;
while (res[lenres+1]or 0) == 0 and lenres > 0 do lenres=lenres-1 end
local j = 1
for i=lenres,0,-1 do
result.data[j] = (res[i+1]or 0)
j = j + 1
end
result.sign = res_sign < 0 and -1 or 1
result.point = op1.point + op2.point
if result.point > result:length() then result:fractionalzero()end
if not (op1.nodelzero or op2.nodelzero) then result:delzero() end
return result
end,
__div = function (op_1, op_2) --大數除法 轉為乘法 (除數取倒數)
local op1, op2 = p.bigint(op_1), p.bigint(op_2)
--處理NaN及Inf
if op1.isNaN or op2.isNaN then return op1.isNaN and op1:clone() or op2:clone() end
if op1.isInf or op2.isInf then
if op1.isInf and op2.isInf then return p.bigint():nan() end
if op1.isInf then return op1:clone() end
if op2.isInf then return p.bigint(0) end
end
--處理零
local op1_iszero, op2_iszero = op1:equal(0), op2:equal(0)
if op1_iszero or op2_iszero then
--被除數和除數皆為零無意義
if op1_iszero and op2_iszero then return p.bigint():nan() end
local result = p.bigint():inf()
result.sign = op1.sign * op2.sign
--被除數為零結果為零不必計算;除數為零無法計算
return op2_iszero and result or p.bigint(0)
end
local invop2 = op2:inverse(op_1:length() * 2 + 2)
local result = op1 * invop2 --將除法轉換成乘以倒數
result:setpoint(op_1:length() + 1)
local pointfix = p.bigint("1")
pointfix.point = result.point
pointfix:fractionalzero()
result = result + pointfix
result:setpoint(op_1:length())
if not (op1.nodelzero or op2.nodelzero) then result:delzero() end
return result
end,
__mod = function (op_1, op_2)
local op1, op2 = p.bigint(op_1), p.bigint(op_2)
--處理NaN及Inf
if op1.isNaN or op2.isNaN then return op1.isNaN and op1:clone() or op2:clone() end
if op1.isInf or op2.isInf then
if op1.isInf or (op1.isInf and op2.isInf) then return p.bigint(0):nan() end
return op2:clone()
end
--處理零
local op1_iszero, op2_iszero = op1:equal(0), op2:equal(0)
if op1_iszero or op2_iszero then
--被除數和除數皆為零餘數為0
if op1_iszero and op2_iszero then return p.bigint(0) end
local result = p.bigint():nan()
result.sign = op1.sign * op2.sign
--被除數為零結果為零不必計算;除數為零無法計算
return op2_iszero and result or p.bigint(0)
end
if op1:equal(op2) then return p.bigint(0) end
if p.bigintmath.abs(op1) < p.bigintmath.abs(op2) then
if op1.sign == op2.sign then return op1 end
return op1 + op2
end
local divided = op1 / op2
if divided.sign < 0 and divided.point > 0 then divided = divided - 1 end
divided:setpoint(0)
local result = op1 - divided * op2
if not (op1.nodelzero or op2.nodelzero) then result:delzero() end
return result
end,
__pow = function (op_1, op_2)
local op1, op2 = p.bigint(op_1), tonumber(tostring(op_2)) or 1
local this = op1
--處理NaN及Inf
if this.isNaN then return this:clone() end
if this.isInf then
if op2 < 0 then return p.bigint(0) end
if op2 == 0 then return p.bigint(1) end
return this:clone()
end
--非整數的指數不支援,目前僅能計算某數的整數次方。使用一般非高精度的math.pow運算
local is_op2_exp = tostring(op2):find("[eE][+-]?%d")
if math.abs(utils.myfloor(op2) - op2) > 1e-14 or is_op2_exp then return p.bigint(math.pow(tonumber(tostring(op_1)) or 1, op2)) end
if op2 < 0 then --負的次方為倒數自乘
this = this:inverse(this:length() + 1)
op2 = -op2
end
--零次方
if op2 == 0 then
--零的零次方無意義
if op1:equal(0) then return op1:equal():nan() end
return p.bigint(1) --任意數的零次方為一
end
if op2 == 1 then return this:clone() end --任意數一次方為本身
if op2 == 2 then return this * this end
local loge = math.log(op2)
local log2 = loge / math.log(2)
if utils.isInt(log2) then --次方為2的冪 直接連續自乘,以減少乘法運算的次數
local result = this:clone()
for i=1,log2 do
result = result * result
end
return result
end
local log3 = loge / math.log(3)
if utils.isInt(log3) then --次方為3的冪 直接連續的3次自乘,以減少乘法運算的次數
local result = this:clone()
for i=1,log3 do
result = result * result * result
end
return result
end
local times_data = {}
local times_times = {}
local two_time = math.pow(2, math.floor(log2)) --其餘情況轉換成2的冪的組合,以減少乘法運算的次數
local lose_time = op2 - two_time
local to_times = this:clone()
local zero_flag = 0
repeat --重複分成2的冪的組合
for i=1,log2 do --連續自乘
to_times = to_times * to_times
end
times_data[#times_data+1] = to_times --紀錄本次自乘次數的結果
times_times[#times_times+1] = two_time
log2 = math.log(lose_time) / math.log(2) --計算剩餘數字的2的冪的組合
two_time = math.pow(2, math.floor(log2))
lose_time = lose_time - two_time --計算扣除本次的2的冪的次數後剩下多少次要乘
to_times = this:clone()
if lose_time <= 0 then zero_flag = zero_flag + 1 end --剩餘次數為0為迴圈結束條件
until zero_flag > 1
local result = p.bigint(1)
for i=1,#times_data do --將所有自乘次數的結果相乘
result = result * times_data[i]
end
return result
end,
__tostring = function (this)
local this_length = this:length()
local result = ''
for i = 1, this_length do
if i == this_length - this.point + 1 then
result = result .. '.' --到達小數位置放置小數點
end
result = result .. string.format(string.format("%%0%dd", this.base_pow), this.data[i])
end
if result:find("%.") then else
result = result .. '.' --若無小數點,補上小數點,以便清除小數點後方的零
end
result = mw.text.trim(result,"0") --移除前導零與小數點後方的零
if result:sub(1,1) == '.' then result = '0' .. result end --將 .XXX 補成 0.XXX
result = mw.text.trim(result,".") --移除多餘的小數點
if mw.text.trim(result) == '' then result = '0' end --若整體為空字串,則結果為零
if this.isInf then result = 'inf' end
if this.isNaN then result = 'nan' end
if this.sign < 0 then result = '−' .. result end --補上正負號
return result
end,
__unm = function (this)
local result = this:clone()
result.sign = result.sign * -1
return result
end,
__eq = function (op_1, op_2)
local op1, op2 = p.bigint(op_1), p.bigint(op_2)
return op1:equal(op2)
end,
__lt = function (op_1, op_2)
return op_1:less(op_2)
end,
__le = function (op_1, op_2)
return op_1:lessequal(op_2)
end,
}
function p.bigint(input_data, base)
local _base_pow = 6
local _base = 10 ^ _base_pow
if type(input_data) == type({}) and (input_data or {})['type'] == 'bigint' then return input_data end
local _bigint = { --大數資料結構
data = {0}, --大數的各個位數
sign = 1, --大數的正負號
point = 0, --小數位數數量
base = _base, --運算的底數 (必須是10的次方)
base_pow = _base_pow, --該底數是10的多少次方,用於處理輸出
['type'] = 'bigint', --標記type為bigint
numberType = 'bigint'
}
function _bigint:length() --取得大數的位數
return #(self.data)
end
function _bigint:atl(dig) --取得從右起算的第n位數
local idx = self:length() - dig + 1
if idx <= 0 then
for i = 1,1-idx do
table.insert(self.data, 1, 0)
end
end
return self.data[self:length() - dig + 1] or 0
end
function _bigint:setl(dig, value) --設定從右起算的第n位數
local idx = self:length() - dig + 1
if idx <= 0 then
for i = 1,1-idx do
table.insert(self.data, 1, 0)
end
end
self.data[self:length() - dig + 1] = value
return self
end
function _bigint:nan() --標記為NaN
self.isNaN = true
return self
end
function _bigint:inf() --標記為Inf
self.isInf = true
return self
end
function _bigint:setpoint(point) --設定小數位數
local point_diff = point - self.point
if point_diff > 0 then
for i=1,point_diff do
self.data[self:length() + 1] = 0
end
elseif point_diff < 0 then
for i=1,-point_diff do
table.remove( self.data, self:length())
end
end
self.point = point
return self
end
function _bigint:fractionalzero() --依據小數位數補齊零至個位數
if self.point >= self:length() then
local lost_digs = self.point - self:length()
for i=1,lost_digs+1 do
table.insert(self.data, 1, 0)
end
end
end
function _bigint:delzero() --移除前導零
for i=1,self:length()-self.point do
if math.abs(self.data[1]) > 1e-14 then break
else
table.remove( self.data, 1)
end
end
local self_point = self.point
for i=1,self_point do
if math.abs(self:atl(1)) > 1e-14 then break
else
table.remove( self.data, self:length())
self.point = self.point - 1
end
end
return self
end
function _bigint:equal(op) --大數相等判斷
local other = p.bigint(op):clone()
if self.isNaN or other.isNaN then return false end
if self.isInf or other.isInf then
return (self.isInf and other.isInf) and (self.sing == other.sing) or (self.isInf == other.isInf)
end
if self.sign ~= other.sign then
if utils.is_zero(self.data) and utils.is_zero(other.data) then
return true
end
return false
end
local myself = self:clone()
myself:delzero()
other:delzero()
local max_point = math.max(myself.point, other.point)
myself:setpoint(max_point + 1)
other:setpoint(max_point + 1)
local max_digs = math.max(myself:length(), other:length())
for i = 1, max_digs do
if myself:atl(i) ~= other:atl(i) then return false end
end
return true
end
function _bigint:clone() --複製一份大數物件
local result = p.bigint()
for i=1,self:length() do result.data[i] = self.data[i]end
for k,v in pairs(self) do
if k~="data" and type(v) ~= type({}) and type(v) ~= type(function()end) then
result[k] = v
end
end
return result
end
function _bigint:intlength() --取得整數部分的位數
local length = self:length() - self.point
if length == 1 and math.abs(self.data[length]) < 1e-14 then return 0 end
return length
end
function _bigint:divsmall(other) --大數除一般的數 (長除法)
local num = (type(other) == type(0)) and other or (tonumber(tostring(other)) or 1)
local result = self:clone()
result.data = utils.modulo_div(result.data, result.base, num)
return result
end
function _bigint:divdigits(op_2, digit) --大數除法指定計算位數
local op1, op2 = self, p.bigint(op_2)
local invop2 = op2:inverse(digit * 2 + 2)
local result = op1 * invop2
result:setpoint(digit + 1)
local pointfix = p.bigint("1")
pointfix.point = result.point
pointfix:fractionalzero()
result = result + pointfix
result:setpoint(digit)
if not (op1.nodelzero or op2.nodelzero) then result:delzero() end
result.isNaN = op1.isNaN or op2.isNaN
return result
end
function _bigint:inverse(_digs) --大數倒數 (牛頓法)
if self.isNaN then return p.bigint():nan() end
if self.isInf then return p.bigint(0) end
local digs = (_digs or (self:length() * 2)) + 1
if self:equal(p.bigint("0")) then error("嘗試除以零",2) end
--計算牛頓法迭代起始值
local init = p.bigint("1")
local intlength = self:intlength()
for i=1,digs - intlength + 1 do
init.data[init:length() + 1] = 0
end
local myself = self:clone()
local to_div = self:clone()
to_div.sign = 1
myself:delzero()
local first_non_zero, pre_point = myself.data[1], 0
--若要計算的數絕對值小於1需要補齊位數
for i = 2, myself:length() do
if math.abs(first_non_zero) > 1e-14 then break end
pre_point = pre_point + 1
first_non_zero = myself.data[i]
end
--以1除以最高位數作為起始值,使用長除法
init.data = utils.modulo_div(init.data, myself.base, first_non_zero)
init.nodelzero = true
for i=1,intlength - pre_point - 1 do
table.insert(init.data, 1, 0)
end
for i=1,pre_point do
init.data[#init.data + 1] = 0
end
init.point = digs
--設定牛頓法起始值
local x0 = (2 - init * to_div) * init
x0:fractionalzero()
x0.nodelzero = true
x0:setpoint(digs)
local x1 = x0
x0 = init
local i = 0
--迭代,當各個位數值不再改變則結束計算
while not x0:equal(x1) do
--x1 = (2 - x0 * num) * x0
local new_x1 = (2 - x0 * to_div) * x0
new_x1:fractionalzero()
new_x1.nodelzero = true
new_x1:setpoint(digs)
x1 = x0
x0 = new_x1
--避免無窮迴圈,設定最高迭代次數
if i > 20 then break end
i = i + 1
end
x0.sign = self.sign
return x0
end
function _bigint:less(other)
local op1, op2 = p.bigint(self), p.bigint(other)
if op1.isNaN or op2.isNaN then return false end
if op1.isInf or op2.isInf then
if op1.isInf and op2.isInf then return op1.sign < op2.sign end
if op1.isInf then return op1.sign < 0 end
return op2.sign > 0
end
if op1.point > op2.point then op2:setpoint(op1.point)
elseif op1.point < op2.point then op1:setpoint(op2.point)end
local total_len = math.max(op1:length(), op2:length())
for i=1,total_len do
local j = total_len - i + 1
local a, b = op1:atl(j) * op1.sign, op2:atl(j) * op2.sign
if a ~= b then
return a < b
end
end
return false
end
function _bigint:lessequal(other)
local op1, op2 = p.bigint(self), p.bigint(other)
if op1.isNaN or op2.isNaN then return false end
if op1.isInf or op2.isInf then
if op1.isInf and op2.isInf then return op1.sign <= op2.sign end
if op1.isInf then return op1.sign < 0 end
return op2.sign > 0
end
if op1.point > op2.point then op2:setpoint(op1.point)
elseif op1.point < op2.point then op1:setpoint(op2.point)end
local total_len = math.max(op1:length(), op2:length())
for i=1,total_len do
local j = total_len - i + 1
local a, b = op1:atl(j) * op1.sign, op2:atl(j) * op2.sign
if a ~= b then
return a < b
end
end
return true
end
setmetatable(_bigint, p.bigintMeta)
if input_data == nil then return _bigint end
local in_str = tostring(input_data)
in_str = mw.text.trim(in_str)
--取得第一個字元判斷正負號
local first_sign = mw.ustring.sub(in_str,1,1)
if first_sign == '-' or first_sign == '−' then _bigint.sign = -1 end
local src_base = tonumber(base) or 10
if src_base < 24 then
if utils.isInf(in_str) then return _bigint:inf() end
if utils.isNaN(in_str) then return _bigint:nan() end
end
--特殊底數的進制先轉成十進制
if ((base ~= nil) and not tonumber(base)) or (src_base < 0) or (not (utils.isInt(src_base))) or (mw.ustring.match(in_str,"^[+-−]?0[xX]")) then
first_sign = mw.ustring.sub(in_str,1,1) --先前已記錄正負號,故先移除正負號
if first_sign == '+' or first_sign == '-' or first_sign == '−' then in_str = mw.ustring.sub(in_str,2,-1)end
in_str = p.convertBase(in_str .. ((math.abs(src_base) > 36) and ';' or ''), 10, base) --轉成十進制
first_sign = mw.ustring.sub(in_str,1,1) --若轉換完畢仍有正負號,更新正負號
if first_sign == '-' or first_sign == '−' then _bigint.sign = _bigint.sign * -1 end
src_base = 10 --已經轉成十進制
end
--從字串讀取位數
local int_digits, fractional_digits = lib_calc._getNumString(in_str .. ((math.abs(src_base) > 36) and ';' or ''), src_base>14)
if math.abs(src_base) <= 1 then src_base = 10 end
--轉換為大數運算的目標進位制
_bigint.data = utils._convertBase(int_digits, src_base, _base, false)
fractional_digits = utils._convertBase(fractional_digits, src_base, _base, true)
--將位數存入大數物件
for i=1,#fractional_digits do
_bigint.data[_bigint:length() + 1] = fractional_digits[i]
end
_bigint.point = #fractional_digits
return _bigint
end
p.bigintmath = {
abs=function(op)
local num = p.bigint(op):clone()
num.sign = 1
return num
end,
floor=function(op)
local num = p.bigint(op):clone()
if num.sign < 0 then
num.sign = 1
num = p.bigintmath.ceil(num)
num.sign = -1
return num
end
num:setpoint(0)
return num
end,
ceil=function(op)
local num = p.bigint(op):clone()
if num.sign < 0 then
num.sign = 1
num = p.bigintmath.floor(num)
num.sign = -1
return num
end
num:delzero()
if num.point > 0 then
num:setpoint(0)
num = num + 1
end
return num
end,
div=function(op1,op2)
return op1 / op2
end,
re=function(z)return p.bigint(z) end,
nonRealPart=function(z) return p.bigint(0) end,
inverse=function(op)
local num = p.bigint(op):clone()
return num:inverse(16)
end,
digits=function(op)
local num = p.bigint(op)
if num.isInf or num.isNaN then return num:clone() end
return p.bigint(num:intlength())
end,
sqrt=function(op) --計算平方根,牛頓法
local num = p.bigint(op)
if num.isInf or num.isNaN then return num:clone() end
if num:less(0) then error('不支援計算負值的平方根',2) end
local i = 0
--先用一般的math.sqrt計算
local init_sqrt = math.sqrt(tonumber(tostring(op)))
local x0 = p.bigint(-1)
local x1 = p.bigint(init_sqrt)
local check_sqrt = tostring(init_sqrt)
if check_sqrt:find("[Ee]") then else
local strlen = check_sqrt:gsub("%.",''):len()
--若結果位於有效數字內,則直接回傳運算結果
if strlen < 13 then
return x1
end
end
--若計算的數字大小超過math.sqrt能計算的範圍及精度,則開始調用牛頓法
local i = 0
local digits = x1:length()+num:length()
--計算至各個位數不變時則停止
while not x0:equal(x1) and not x0:equal(x1 - 1) do
x0 = x1
--牛頓法迭代
-- x1 = (num / x0 + x0) / 2
x1 = (num:divdigits(x0,digits+3) + x0):divsmall(2)
if x0.point > 0 or x1.point > 0 then
x0:setpoint(digits+2)
x1:setpoint(digits+2)
end
x0:delzero()
x1:delzero()
--避免無窮迴圈,設定最高迭代次數
if i > 20 then break end
i = i + 1
end
if x0.point > 0 then x0:setpoint(digits)end
return x0
end,
modf = function (op_1)
local op1 = p.bigint(op_1):clone()
local sign = op1.sign
local int_part = p.bigint(op_1):clone()
op1.sign = 1
int_part.sign = 1
int_part:setpoint(0)
local frac_part = op1 - int_part
int_part.sign = sign
frac_part.sign = sign
return int_part, frac_part
end,
fmod = function (op_1, op_2)
local op1, op2 = p.bigint(op_1), p.bigint(op_2)
--處理NaN及Inf
if op1.isNaN or op2.isNaN then return op1.isNaN and op1:clone() or op2:clone() end
if op1.isInf or op2.isInf then
if op1.isInf or (op1.isInf and op2.isInf) then return p.bigint(0):nan() end
return op2:clone()
end
--處理零
local op1_iszero, op2_iszero = op1:equal(0), op2:equal(0)
if op1_iszero or op2_iszero then
--被除數和除數皆為零餘數為0
if op1_iszero and op2_iszero then return p.bigint(0) end
local result = p.bigint():nan()
result.sign = op1.sign * op2.sign
--被除數為零結果為零不必計算;除數為零無法計算
return op2_iszero and result or p.bigint(0)
end
if op1:equal(op2) then return p.bigint(0) end
if p.bigintmath.abs(op1) < p.bigintmath.abs(op2) then return op1 end
local divided = op1 / op2
divided:setpoint(0)
local result = op1 - divided * op2
if not (op1.nodelzero or op2.nodelzero) then result:delzero() end
result.isNaN = op1.isNaN or op2.isNaN
return result
end,
frexp=function(op)
local num = tostring(op)
local bignum = p.bigint(op)
local result = p.bigint()
--處理NaN及Inf
if utils.isNaN(num) then return p.bigint(op), p.bigint(0)end
if utils.isInf(num) then return p.bigint(op), p.bigint(0)end
--計算目標數是2的多少次方
local log2 = math.log(math.abs(tonumber(num) or 1)) / math.log(2)
--為了避免精度丟失,當是2的負數次方時,乘到正數次方
if log2 < 0 then
log2 = utils.myceil(log2)
bignum = bignum * (p.bigint(2)^math.abs(log2))
num = tostring(bignum)
else log2 = 0 end
--轉換為二進制
local result_str = p.convertBase(num, 2, 10, 0, 192) --使用比double高3倍的精度以便處理無窮小數 (64 * 3 = 192)
local sign_text = mw.ustring.sub(result_str,1,1)
local sign = 1
--讀取正負號
if sign_text == '+' or sign_text == '-' or sign_text == '−' then
result_str = mw.ustring.sub(result_str,2,-1)
sign = (sign_text == '-' or sign_text == '−') and -1 or 1
end
--frexp當x為零,則回傳兩個零
if result_str=='0' then
result.sign = sign
return result, p.bigint(0)
end
--當數值為0.XXX時
if result_str:sub(1,2) == '0.' then
if result_str:match("0%.[1-9]")then
return p.bigint(num), p.bigint(0 + log2)
else --當數值為0.00...00XXX
result_str = result_str:sub(3,-1) --去除 "0."
local find_num = result_str:find("[1-9]") --找到第一個有效數字
if not find_num then --找不到意味著數字為0
result.sign = sign
return result, p.bigint(0)
end
result_str = '0.'..result_str:sub(find_num,-1) --處理成0.XXX
result_str = p.convertBase(result_str, 10, 2, 0, result.base_pow * 9) --轉回十進制
result = p.bigint(result_str) --超出的精度處理
local pointfix = p.bigint("1") --準備一個極小的數值相加,讓諸如 0.999999....的可以進位
pointfix.point = result.point
pointfix:fractionalzero()
result.sign = 1
result = result + pointfix
result:setpoint(8)
result:delzero()
result.sign = sign
return result, p.bigint(log2 - find_num + 1)
end
else --當數值為 XX.XXX 時
local find_point = (result_str..'.'):find("%.")
local turn_str = result_str:gsub("%.",'')
turn_str = '0.'..turn_str
result = p.bigint(turn_str,2)
result.sign = sign
return result, p.bigint(find_point-1)
end
end,
max=function(...)
local nums = {...}
local max_val = -p.bigint():inf()
for i=1,#nums do
local value = p.bigint(nums[i])
if not utils.isNaN(value) then
if max_val < value then
max_val = value
end
end
end
return max_val
end,
min=function(...)
local nums = {...}
local min_val = p.bigint():inf()
for i=1,#nums do
local value = p.bigint(nums[i])
if not utils.isNaN(value) then
if value < min_val then
min_val = value
end
end
end
return min_val
end,
random=function(op_1, op_2)
if (not op_1) and (not op_2) then
local random_number = '0.'
for i=1,36 do random_number=string.format("%s%d", random_number, math.random(0,9))end
return p.bigint(random_number)
end
--計算op1到op2之間的亂數
local op1, op2 = p.bigint(op_1), p.bigint(op_2)
if not op_2 then --若只輸入op1,則計算1到op1之間的亂數
op2 = op1
op1 = p.bigint(1)
end
if op2 < op1 then --若op1較大,則計算op2到op1之間的亂數
local tmp = op1
op1 = op2
op2 = tmp
end
op1:setpoint(0)--取整
op2:setpoint(0)
if op1:equal(op2) then return op1:clone() end --若op1==op2則直接回傳
local all_digit = op2 - op1
local random_number = ''
local all_digit_number = tonumber(tostring(all_digit))
if all_digit_number < 2147483647 then --若落在math.random可計算的範圍內則直接計算
random_number = p.bigint(math.random(0, all_digit_number))
else
all_digit:delzero()
local all_digit_length = all_digit:length()
for i=1,all_digit_length do random_number=string.format(string.format("%%s%%0%dd", all_digit.base_pow), random_number, math.random(0,all_digit.base))end
random_number = p.bigint(random_number)
random_number = random_number % (all_digit + 1)
end
return random_number + op1
end,
coterminal_angle=function(op)
if not p.bigintmath.isinit then p.bigintmath.init() end
local num = p.bigint(op)
local twopi = p.bigintmath.pi * 2
return num - p.bigintmath.floor(num / twopi) * twopi
end,
deg=function(op)
if not p.bigintmath.isinit then p.bigintmath.init() end
local num = p.bigint(op)
return num * 180 / p.bigintmath.pi
end,
rad=function(op)
if not p.bigintmath.isinit then p.bigintmath.init() end
local num = p.bigint(op)
return num * p.bigintmath["°"]
end,
sin=function(op_1)
local op1 = tonumber(tostring(p.bigintmath.coterminal_angle(p.bigint(op_1)))) or 0
return p.bigint(math.sin(op1))
end,
cos=function(op_1)
if not p.bigintmath.isinit then p.bigintmath.init() end
local op1 = tonumber(tostring(p.bigintmath.coterminal_angle(p.bigint(op_1)))) or p.bigintmath.pi
return p.bigint(math.cos(op1))
end,
tan=function(op_1)
local op1 = tonumber(tostring(p.bigintmath.coterminal_angle(p.bigint(op_1)))) or 0
return p.bigint(math.tan(op1))
end,
cot=function(op_1)
local op1 = tonumber(tostring(p.bigintmath.coterminal_angle(p.bigint(op_1)))) or 0
return p.bigint(1/math.tan(op1))
end,
asin=function(op_1)
local op1 = tonumber(tostring(op_1)) or 0
return p.bigint(math.asin(op1))
end,
acos=function(op_1)
local op1 = tonumber(tostring(op_1)) or 1
return p.bigint(math.acos(op1))
end,
atan=function(op_1)
local op1 = tonumber(tostring(op_1)) or 1
return p.bigint(math.atan(op1))
end,
atan2=function(op_1, op_2)
local op1, op2 = tonumber(tostring(op_1)) or 1, tonumber(tostring(op_2)) or 1
return p.bigint(math.atan2(op1, op2))
end,
acot=function(op_1)
local op1 = tonumber(tostring(op_1)) or 1
return p.bigint(math.atan(1/op1))
end,
sinh=function(op_1)
local op1 = tonumber(tostring(op_1)) or 0
return p.bigint(math.sinh(op1))
end,
cosh=function(op_1)
local op1 = tonumber(tostring(op_1)) or 1
return p.bigint(math.cosh(op1))
end,
tanh=function(op_1)
local op1 = tonumber(tostring(op_1)) or 1
return p.bigint(math.tanh(op1))
end,
coth=function(op_1)
local op1 = tonumber(tostring(op_1)) or 1
return p.bigint(math.cosh(op1) / math.sinh(op1))
end,
asinh=function(op_1)
local op1 = tonumber(tostring(op_1)) or 0
return p.bigint(math.log( op1 + math.sqrt( op1 * op1 + 1 ) ))
end,
acosh=function(op_1)
local op1 = tonumber(tostring(op_1)) or 1
return p.bigint(math.log( op1 + math.sqrt( op1 * op1 - 1 ) ))
end,
atanh=function(op_1)
local op1 = tonumber(tostring(op_1)) or 1
return p.bigint(0.5 * math.log((1+op1)/(1-op1)))
end,
acoth=function(op_1)
local op1 = tonumber(tostring(op_1)) or 1
return p.bigint(0.5 * math.log((op1+1)/(op1-1)))
end,
sgn=function(op)
local num = p.bigint(op)
return p.bigint(num.sign)
end,
exp=function(op)
if not p.bigintmath.isinit then p.bigintmath.init() end
local result = p.bigintmath.e ^ tonumber(tostring(op))
result:setpoint(p.bigintmath.e.point)
return result
end,
ldexp=function(op1, op2)
return p.bigint(op1) * (p.bigint(2) ^ tonumber(tostring(op2)))
end,
pow=function(op_1, op_2)
local op1, op2 = p.bigint(op_1), tonumber(tostring(op_2)) or 1
return op1 ^ op2
end,
elog=function(op_1)
local invlog10e = p.bigint("2.30258509299404568401799145468436420760110148862877297603332790096757260967735248023599720508960")--1/log10(e)
local result = p.bigintmath.log10(op_1) * invlog10e--1/log10(e)
result:setpoint(invlog10e.point)
return result
end,
["log10"]=function(op)
local num_str = tostring(op)
--處理NaN及Inf
if utils.isNaN(num_str) then return p.bigint():nan() end
if utils.isInf(num_str) then return p.bigint(op) end
local result_str = num_str
local sign_text = result_str:sub(1,1)
local sign = 1
if sign_text == '+' or sign_text == '-' or sign_text == '−' then
result_str = mw.ustring.sub(result_str,2,-1)
sign = (sign_text == '-' or sign_text == '−') and -1 or 1
end
if sign < 0 then return -p.bigint():nan() end
local result_str_len = result_str:len()
local digits = 0
if result_str:match("^[0.]+$") then --零
return -p.bigint():inf() --log(0) = -inf
end
--當數值為0.XXX時
if result_str:sub(1,2) == '0.' then
result_str = result_str:sub(3,-1) --去除 "0."
local find_num = result_str:find("[1-9]") --找到第一個有效數字
if not find_num then --找不到意味著數字為0
return -p.bigint():inf()
end
--處理成X.XXX
result_str = result_str:sub(find_num,find_num)..((find_num >= result_str_len)and''or('.'..result_str:sub(find_num+1,-1)))
digits = -find_num
else --當數值為 XX.XXX 時
local find_point = (result_str..'.'):find("%.")
local turn_str = result_str:gsub("%.",'')
--處理成X.XXX
result_str = (turn_str:len()==1) and turn_str or (turn_str:sub(1,1)..'.'..turn_str:sub(2,-1))
digits = find_point-2
end
--計算X.XXX的常用對數
local log_value = p.bigint(math.log10(tonumber(result_str)))
--將結果與位數相加
log_value = log_value + digits
return log_value
end,
log=function(_z,_basez)
local z = tonumber(tostring(_z)) or 1
local basez = tonumber(tostring(_basez))
if basez~=nil then return math.log(basez) / math.log(z) end
return p.bigint(math.log(z))
end,
factorial=function(op)
local num = math.floor(tonumber(tostring(op)) or 1)
if num < 0 then return p.bigint():inf() end
local result = p.bigint(1)
for i=1,num do
result = result * i
end
return result
end,
bigint=function()
return 1
end,
init = function(base)
p.bigintmath.base = tonumber(base) or 10
p.bigintmath.e = p.bigint("2.71828182845904523536028747135266249775724709369995957496696762772407663035354759457138217852517")
p.bigintmath.pi = p.bigint("3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534212")
p.bigintmath["π"] = p.bigintmath.pi
p.bigintmath["°"] = p.bigint(p.bigintmath.pi/180)
p.bigintmath.nan = p.bigint():nan()
p.bigintmath.inf = p.bigint():inf()
p.bigintmath.huge = p.bigintmath.inf
p.bigintmath.zero = p.bigint(0)
p.bigintmath.one = p.bigint(1)
p.bigintmath[-1] = p.bigint(-1)
p.bigintmath[0],p.bigintmath[1] = p.bigint(0),p.bigint(1)
p.bigintmath.elements = {p.bigint(1)}
p.bigintmath.numberType = lib_solve._numberType
p.bigintmath.isinit = true
p.bigintmath.constructor = function(x)
if type(x) == type({}) and (x or {})['type'] == 'bigint' then return x end
if tonumber(tostring(x), p.bigintmath.base) then
return p.bigint(x)
end
return nil
end
return p.bigintmath
end
}
function p._FFT(reA, inA, num, flag) --提供大數乘法使用
local lgn = math.floor(math.log(num) / math.log(2))
for i=0,num-1 do
local j = bit.rev(i,lgn)
if j > i then utils._swap(reA, i+1, reA, j+1); utils._swap(inA, i+1, inA, j+1) end
end
for s=1,lgn do
local m = bit.lS(1,s)
local reWm, inWm = math.cos(2*math.pi/m), math.sin(2*math.pi/m)
if flag==true then inWm = -inWm end
local k = 0 while k < num do
local reW, inW = 1.0, 0.0
for j=0,math.floor(m/2)-1 do
local tag = k + j + math.floor(m / 2);
local reT = reW * (reA[tag+1]or 0) - inW * (inA[tag+1]or 0);
local inT = reW * (inA[tag+1]or 0) + inW * (reA[tag+1]or 0);
local reU, inU = (reA[k+j+1]or 0), (inA[k+j+1]or 0);
reA[k+j+1] = reU + reT; inA[k+j+1] = inU + inT;
reA[tag+1] = reU - reT; inA[tag+1] = inU - inT;
local reWt = reW * reWm - inW * inWm;
local inWt = reW * inWm + inW * reWm;
reW = reWt; inW = inWt;
end
k=k+m end
end
end
function bit.rev(x,_len)
local ans = 0
for i=1,_len do ans=bit.lS(ans,1);ans=bit.Or(ans,bit.And(x,1));x=bit.rS(x,1) end
return ans
end
--能提供給模板調用的進制轉換函數
function p.convertBase(_num, _to, _from, _digs, _precision, _sub)
local num, from, to, digs, subarg, precision = tostring(_num) or "0", _from or 10, _to or 10, _digs or 0, _sub or 0, _precision or -1
local from_str, to_str = tostring(_from or ''), tostring(_to or '')
local default, prefix, suffix = '', '', ''
local no_from = not _from
local is_template = false
--從模板讀取參數
if type(_num) == type({}) then
local frame = _num
local success, args = false, frame
is_template = true
if type((((type(_num) == type(0)) and {} or _num) or {}).args) == type({}) then
success, args = pcall(getArgs, frame, {
parentFirst=true
}) --frame.args
if not success then args = frame.args or frame end
end
local arg1 = mw.ustring.gsub(mw.text.trim(args[1] or args['1'] or ''), "[-−]+", "-")
local arg2 = mw.text.trim(args[2] or args['2'] or args.number or args.Number or args.num or args.Num or args.n or args.N or '')
local arg3 = mw.text.trim(args[3] or args['3'] or args.width or args.Width or '')
local argTo = mw.ustring.gsub(mw.text.trim(args.to or args.To or args.base or args.Base or ''), "[-−]+", "-")
local argFrom = mw.ustring.gsub(mw.text.trim(args.from or args.From or ''), "[-−]+", "-")
local argSub = mw.text.trim(args['sub'] or args.Sub or '')
local argDefault = args.default or args.Default or ''
local argPrecision = mw.text.trim(args.precision or args.Precision or '')
local argPrefix = args.prefix or args.Prefix or ''
local argSuffix = args.suffix or args.Suffix or ''
if arg1 ~= '' then
success, to = pcall(utils.checkSpecialBase, arg1)
to = to or arg1
to_str = tostring(arg1)
elseif argTo ~= '' then
success, to = pcall(utils.checkSpecialBase, argTo)
to = to or argTo
to_str = tostring(argTo)
end
num = tostring(arg2)
if arg3 ~= '' then digs = tonumber(arg3) or 0 end
if argFrom ~= '' then
success, from = pcall(utils.checkSpecialBase, argFrom)
no_from = not from
from = from or argFrom
from_str = tostring(argFrom)
else no_from = true end
if argSub ~= '' then subarg = tonumber(argSub) or 0 end
if argDefault ~= '' then default = argDefault end
if argPrefix ~= '' then prefix = argPrefix end
if argSuffix ~= '' then suffix = argSuffix end
if argPrecision ~= '' then precision = tonumber(argPrecision) or -1 end
if yesno(args.error or args.Error or '') then is_template = false end
end
---------------- 例外處理 ----------------
--無限大判斷 (若放任無限大進去計算會無窮迴圈而超時)
if utils.isInf(from) then
if mw.ustring.find(num, "[,:]") then --判斷是否為多個位數的字串
check_digits = lib_calc._getNumString(num..';')
for i=1,#check_digits do if check_digits[1] == 0 then table.remove(check_digits, 1) end end
if #check_digits > 1 then --不只一個位數的無限大進制無法轉換
if not is_template then error(string.format("底數不能為 '%s'", from_str),2) end
return utils.print_base_string('∞', --硬要說的話其值就是無限大
"", {tonumber("inf")}, {},({mw.ustring.find(num, "[-−]")})[1] and -1 or 1, from, to, subarg, prefix, suffix)
end
end
--只有一個位數的無限大進制就原數輸出
local find_point = mw.ustring.find(num, "%.")
local targen_decimal = find_point and mw.ustring.sub(num, 1, find_point-1) or num
return p.convertBase({to,targen_decimal,digs,from=10,sub=subarg,default=default,precision=precision,prefix=prefix,error=not is_template})
end
if mw.ustring.match(num,"^%s*[+-−]?%s*∞%s*$")then--本身是無限大就不用算了,因為無法計算
return utils.print_base_string(num, "", {tonumber("inf")}, {},({mw.ustring.find(num, "[-−]")})[1] and -1 or 1, from, to, subarg, prefix, suffix)
end
--NaN判斷 (若放任NaN進去計算會無窮迴圈而超時)
if utils.isNaN(from) then --並非有效的底數,無法轉換
if not is_template then error(string.format("底數不能為 '%s'", from_str),2) end
return default
end
if utils.isNaN(to) then --並非有效的底數,無法轉換
if not is_template then error(string.format("底數不能為 '%s'", to_str),2) end
return default
end
--大過整數運算範圍的底數無法計算 (誤差導致運算結果不準確)
if math.abs(utils.tonumber(from)or 0) > 9007199254740991 and not utils.isInf(from) then
if not is_template then error(string.format("底數 '%s' 過大", from_str),2) end
return default
end
if math.abs(utils.tonumber(to)or 0) > 9007199254740991 and not utils.isInf(to) then
if not is_template then error(string.format("底數 '%s' 過大", to_str),2) end
return default
end
--判斷是否為特殊進制
local special_base_data_from, from_error = utils.getSpecialBase(from)
local special_base_data_to, to_error = utils.getSpecialBase(to)
if from_error then
if not is_template then error(from_error,2) end
return default
end
if to_error then
if not is_template then error(to_error,2) end
return default
end
if (not utils.tonumber(from) and not special_base_data_from) or (not utils.tonumber(to) and not special_base_data_to) then
--複數進位制
local success, int_string, frac_string = pcall(utils.complexBaseConvert, num, to, from, digs, precision)
if success and int_string then
return utils.print_base_string(int_string, frac_string, {}, {}, 1, from, to, subarg, prefix, suffix)
elseif not success then
local error_result = mw.ustring.match(tostring(int_string or ''), '轉換失敗:(.-)。')
if error_result then
if not is_template then error(error_result, 2) end
return default
end
end
end
--並非能夠運算的底數
if not utils.tonumber(from) and not special_base_data_from then
if not is_template then error(string.format("'%s' 不是有效的底數", from_str),2) end
return default
end
if not utils.tonumber(to) and not special_base_data_to then
if not is_template then error(string.format("'%s' 不是有效的底數", to_str),2) end
return default
end
---------------- 例外處理結束,開始轉換進制 ----------------
local to_num = utils.tonumber(to) or 10
local from_num = utils.tonumber(from) or 10
if math.abs(to_num) < 1 then --base can not less then 1
if not is_template then error("底數的絕對值不能小於1",2) end
return default
end
local sign = 1
num = mw.text.trim(num)
if _num == nil or num == '' then return default end
local first_sign = mw.ustring.sub(num,1,1)
--讀取正負號
if first_sign == '+' or first_sign == '-' or first_sign == '−' then
num = mw.ustring.sub(num,2,-1)
if first_sign == '-' or first_sign == '−' then
sign = -1
end
end
--當輸入開頭為'0x'時視為16進制
if no_from or from == 16 then
local chex_hex = mw.ustring.sub(num,1,2)
if chex_hex == '0x' or chex_hex == '0X' then
from = 16
num = mw.ustring.sub(num,3,-1)
end
end
--Fibonacci code word是反向排列的
if (special_base_data_from or {}).name=="fibcode" then
local find_point = mw.ustring.find(num, "%.")
if find_point then num = mw.ustring.sub(num, 1, find_point-1)end
local fibcode2fibbase = ''
for i=1,#num-1 do fibcode2fibbase = mw.ustring.sub(num, i, i) .. fibcode2fibbase end
num = fibcode2fibbase..'0'
end
local ori_int_digits, ori_fractional_digits = lib_calc._getNumString(num, math.abs(from_num) > 14)
--負進制、非整數進制等無法經由長除法整數進制轉整數進制的Case先轉為十進制再做處理
if from_num < -1 or math.abs(utils.myfloor(from_num) - from_num) > 1e-14 or (special_base_data_from or{}).needtoDecimal then
if (special_base_data_from or{}).name == 'ContinuedFraction' then
local dec_string = tostring(utils.fromContinuedFraction(ori_int_digits, ori_fractional_digits))
ori_int_digits, ori_fractional_digits = lib_calc._getNumString(dec_string, math.abs(from_num) > 14)
else
local dec_number = utils.toDecimal(ori_int_digits, ori_fractional_digits, from) * sign
if dec_number < 0 then
sign = -1
dec_number = -dec_number
else
sign = 1
end
ori_int_digits, ori_fractional_digits = lib_calc._getNumString(tostring(dec_number), math.abs(from_num) > 14)
end
from = 10
end
local ori_sign = sign
if to_num < 0 then
local check = math.abs(to_num)
if math.abs(utils.myfloor(check)-check)>1e-14 then
if not is_template then error(string.format("不支援底數 '%s' 的進制", to_str),2) end
return default
end
--負底數進制在轉換過程中要連正負號一同考量
if sign < 0 then
sign = 1
for i=1,#ori_int_digits do ori_int_digits[i] = -ori_int_digits[i]end
for i=1,#ori_fractional_digits do ori_fractional_digits[i] = -ori_fractional_digits[i]end
end
end
local int_digits, fractional_digits = ori_int_digits, ori_fractional_digits
if math.abs(utils.myfloor(to_num) - to_num) > 1e-14 or math.abs(from_num + 1) < 1e-14 then --非整數進制的處理
int_digits, fractional_digits, sign = utils.non_integer_base(int_digits, fractional_digits, from, to, sign)
for i = #fractional_digits, 1, -1 do
if fractional_digits[i] ~= 0 then break
else
table.remove(fractional_digits, i)
end
end
elseif math.abs(math.abs(to_num) - 1) < 1e-14 then --一進制,自然數中最簡單的進制,輸出跟數字相同數量的1即可
local number = utils.myfloor(utils.toDecimal(ori_int_digits, {}, from))
if math.abs(number) <= 9007199254740991 then --Lua整數運算上限
local base1 = (math.abs(number) > 0)
and ((to_num < 0)
and ((number < 0)
and string.rep('10', math.abs(number))
or ('1' .. ((math.abs(number - 1) < 1e-14) and '' or string.rep('01', number - 1) )) )
or string.rep('1', math.abs(number)))
or '0'
if base1:len() < digs then --補齊位數
local lose_digs = digs - base1:len()
base1 = string.rep('0', lose_digs) .. base1
end
return utils.print_base_string(base1, "", ori_int_digits, {},(to_num < 0) and 1 or sign, from, to, subarg, prefix, suffix)
end
if not is_template then error(string.format("無法將 '%s' 轉換為底數 '%s' 的進制", num, to_str),2) end
return default
else --其餘情況即一般情況,使用整數進制轉整數進制的長除法演算法
int_digits = ((special_base_data_to or{}).convertBase or utils._convertBase)(int_digits, from, to, false)
fractional_digits = ((special_base_data_to or{}).convertBase or utils._convertBase)(fractional_digits, from, to, true, tonumber(precision<0 and '' or precision))
if to_num < 0 then int_digits, fractional_digits = utils.negabaseCarry(int_digits, fractional_digits, to_num, ori_sign)end
end
if invert_cvt then
local inv_int = {}
for i = 1,#fractional_digits do table.insert(inv_int, 1, fractional_digits[i])end
fractional_digits = {}
for i = 1,#int_digits do table.insert(fractional_digits, 1, int_digits[i])end
int_digits = inv_int
table.insert(int_digits, #int_digits, fractional_digits[1])
table.remove(fractional_digits, 1)
if #int_digits <= 0 then int_digits = {0} end
end
---------------- 進制轉換完成,準備輸出數字 ----------------
local int_result, fractional_result = '', ''
if #int_digits < digs then --補齊整數位數
local lose_digs = digs - #int_digits
for i=1,lose_digs do
table.insert(int_digits, 1, 0)
end
end
if #fractional_digits < precision then --補齊小數位數
local lose_digs = precision - #fractional_digits
for i=1,lose_digs do
fractional_digits[#fractional_digits+1] = 0
end
end
int_result = utils.printAllDigit(int_digits, to, -1, subarg, false)
fractional_result = utils.printAllDigit(fractional_digits, to, precision, subarg, true)
local result = utils.print_base_string(int_result, fractional_result, ori_int_digits, ori_fractional_digits, sign, from, to, subarg, prefix, suffix)
return result
end
function utils.fromContinuedFraction(int_digits, fractional_digits)
local result = p.bigint(0)
local calclen = math.floor(#fractional_digits / 6) + 1
for i=#fractional_digits,1,-1 do
result = (result + fractional_digits[i]):inverse(calclen + 2)
end
result:setpoint(calclen)
local result = ''..(int_digits[1] or 0)..'.'..tostring(result):gsub("^%d+%.","")
return result
end
function utils.ContinuedFraction(digits, original_base, _destination_base, fractional_flag, total_digit)
local result_digits, zero_digits = {}, {}
local decimal_string = ''
if not fractional_flag then
result_digits = utils._convertBase(digits, original_base, 10, false)
for i=1,#result_digits do
if math.abs(tonumber(result_digits[1]) or 1) < 1e-14 then
table.remove(result_digits, 1)
end
end
decimal_string = table.concat(result_digits, "")
if decimal_string == '' then decimal_string = 0 end
return {decimal_string}
end
result_digits = utils._convertBase(digits, original_base, 10, true)
decimal_string = '0.'..table.concat(result_digits, "")
zero_digits, result_digits = p.ContinuedFraction(decimal_string, math.ceil(total_digit or (decimal_string:len() * 0.8)))
return result_digits
end
--以大數運算計算連分數
function p.ContinuedFraction(input_str, _length)
local num = input_str
local length = tonumber(_length) or 10
local is_template = false
local suffix = _suffix or ''
if type(input_str) == type({"table"}) then
num = (input_str.args or {})[1] or input_str[1] or ''
length = tonumber((input_str.args or {})[2] or input_str[2] or '') or 4
if input_str.args then is_template = true end
elseif type(input_str) ~= type("string") then
num = tostring(input_str)
end
local input_num = p.bigint(num)
local sign = input_num.sign
input_num.sign = 1
local calclen = (input_num:length() < 4) and (input_num:length() * 2) or (input_num:length() + 2)
local int_part = input_num:clone():setpoint(0)
local int_digits, fractional_digits = {tonumber(tostring(int_part))}, {}
local it = input_num - int_part
local i = 1
while not it:equal(0) do
it = it:inverse(calclen)
int_part = it:clone():setpoint(0)
fractional_digits[#fractional_digits + 1] = tonumber(tostring(int_part))
it = it - int_part
if i >= length then break end
i = i + 1
end
if is_template then
return table.concat(int_digits,',') .. ';' .. table.concat(fractional_digits,',')
end
return int_digits, fractional_digits
end
return p