极小质数
极小质数(英语:minimal prime)是娱乐数学中的一个名词,若一质数在数字顺序不变下,所有子序列都不是质数,该质数就是极小质数。
概要
编辑以类似的概念来看,以下的32个合数在数字顺序不变下,所有子序列都不是合数:
- 4, 6, 8, 9, 10, 12, 15, 20, 21, 22, 25, 27, 30, 32, 33, 35, 50, 51, 52, 55, 57, 70, 72, 75, 77, 111, 117, 171, 371, 711, 713, 731 (OEIS数列A071070)
若只考虑除以4会馀1的质数,以下146个质数在数字顺序不变下,其子序列都没有除以4会馀1的质数:
- 5, 13, 17, 29, 37, 41, 61, 73, 89, 97, 101, 109, 149, 181, 233, 277, 281, 349, 409, 433, 449, 677, 701, 709, 769, 821, 877, 881, 1669, 2221, 3001, 3121, 3169, 3221, 3301, 3833, 4969, 4993, 6469, 6833, 6949, 7121, 7477, 7949, 9001, 9049, 9221, 9649, 9833, 9901, 9949, ... (OEIS数列A111055)
若只考虑除以4会馀3的质数,以下113个质数在数字顺序不变下,其子序列都没有除以4会馀3的质数:
十进位的例子
编辑在十进位下,极小质数共有以下26个: 2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049 (A071062)
以409为例,其子序列有4,0,9,40,49,09,都不是质数,因此409为极小质数。子序列不一定要在原质数中连续的位子上。例如109不是极小质数,因为子序列中的19是质数。子序列的数字顺序需和原来相同,不能将两数字的顺序对调。例如991,虽然19是质数,但因为位置对调,不在考虑范围内,而其他子序列都不是质数,因此991是极小质数。
其他进制
编辑极小质数也可以扩展到其他的进制。可以证明在每一个进制下,极小质数的个数都是有限个。换句话说,每一个足够大的质数都至少会有一个子序列是质数。
b | b下的极小质数(以b进制表示,其中的字母A, B, C, ... 表示数值10, 11, 12, ...) | b进制下 极小质数的个数 |
---|---|---|
1 | 11 | 1 |
2 | 10, 11 | 2 |
3 | 2, 10, 111 | 3 |
4 | 2, 3, 11 | 3 |
5 | 2, 3, 10, 111, 401, 414, 14444, 44441 | 8 |
6 | 2, 3, 5, 11, 4401, 4441, 40041 | 7 |
7 | 2, 3, 5, 10, 14, 16, 41, 61, 11111 | 9 |
8 | 2, 3, 5, 7, 111, 141, 161, 401, 661, 4611, 6101, 6441, 60411, 444641, 444444441 | 15 |
9 | 2, 3, 5, 7, 14, 18, 41, 81, 601, 661, 1011, 1101 | 12 |
10 | 2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049 | 26 |
11 | 2, 3, 5, 7, 10, 16, 18, 49, 61, 81, 89, 94, 98, 9A, 199, 1AA, 414, 919, A1A, AA1, 11A9, 66A9, A119, A911, AAA9, 11144, 11191, 1141A, 114A1, 1411A, 144A4, 14A11, 1A114, 1A411, 4041A, 40441, 404A1, 4111A, 411A1, 44401, 444A1, 44A01, 6A609, 6A669, 6A696, 6A906, 6A966, 90901, 99111, A0111, A0669, A0966, A0999, A0A09, A4401, A6096, A6966, A6999, A9091, A9699, A9969, 401A11, 404001, 404111, 440A41, 4A0401, 4A4041, 60A069, 6A0096, 6A0A96, 6A9099, 6A9909, 909991, 999901, A00009, A60609, A66069, A66906, A69006, A90099, A90996, A96006, A96666, 111114A, 1111A14, 1111A41, 1144441, 14A4444, 1A44444, 4000111, 4011111, 41A1111, 4411111, 444441A, 4A11111, 4A40001, 6000A69, 6000A96, 6A00069, 9900991, 9990091, A000696, A000991, A006906, A040041, A141111, A600A69, A906606, A909009, A990009, 40A00041, 60A99999, 99000001, A0004041, A9909006, A9990006, A9990606, A9999966, 40000A401, 44A444441, 900000091, A00990001, A44444111, A66666669, A90000606, A99999006, A99999099, 600000A999, A000144444, A900000066, A0000000001, A0014444444, 40000000A0041, A000000014444, A044444444441, A144444444411, 40000000000401, A0000044444441, A00000000444441, 11111111111111111, 14444444444441111, 44444444444444111, A1444444444444444, A9999999999999996, 1444444444444444444, 4000000000000000A041, A999999999999999999999, A44444444444444444444444441, 40000000000000000000000000041, 440000000000000000000000000001, 999999999999999999999999999999991, 444444444444444444444444444444444444444444441 | 152 |
12 | 2, 3, 5, 7, B, 11, 61, 81, 91, 401, A41, 4441, A0A1, AAAA1, 44AAA1, AAA0001, AA000001 | 17 |
十进制下的12个极小质数列在 A110600。
参考资料
编辑- Chris Caldwell, The Prime Glossary: minimal prime (页面存档备份,存于互联网档案馆), from the Prime Pages
- 2到30进制的极小质数 (页面存档备份,存于互联网档案馆)
- Minimal primes and unsolved families in bases 2 to 30 (页面存档备份,存于互联网档案馆)
- Minimal primes and unsolved families in bases 28 to 50
- J. Shallit, Minimal primes (页面存档备份,存于互联网档案馆), Journal of Recreational Mathematics, 30:2, pp. 113–117, 1999-2000.
- PRP records, search by form 8*13^n+183 (primes of the form 8{0}111 in base 13), n=32020 (页面存档备份,存于互联网档案馆)
- PRP records, search by form (51*21^n-1243)/4 (primes of the form C{F}0K in base 21), n=479149 (页面存档备份,存于互联网档案馆)
- PRP records, search by form (106*23^n-7)/11 (primes of the form 9{E} in base 23), n=800873 (页面存档备份,存于互联网档案馆)