概率论数理统计领域,莱斯分布(Rice distribution或Rician distribution)是一种连续概率分布,以美国科学家斯蒂芬·莱斯英语Stephen O. Rice的名字命名,其概率密度函数为:

Rice
概率密度函数
Rice probability density functions σ=1.0
Rice probability density functions for various v   with σ=1.
Rice probability density functions σ=0.25
Rice probability density functions for various v   with σ=0.25.
累积分布函数
Rice cumulative density functions σ=1.0
Rice cumulative density functions for various v   with σ=1.
Rice cumulative density functions σ=0.25
Rice cumulative density functions for various v   with σ=0.25.
参数
值域
概率密度函数
期望值
方差
偏度 (complicated)
峰度 (complicated)

其中是修正的第一类零阶贝索函数(Bessel function)。当时,莱斯分布退化为瑞利分布

极限情况

编辑

For large values of the argument, the Laguerre polynomial becomes (See Abramowitz and Stegun §13.5.1页面存档备份,存于互联网档案馆))

 

It is seen that as   becomes large or   becomes small the mean becomes   and the variance becomes  

相关条目

编辑

外部链接

编辑