機率論數理統計領域,萊斯分佈(Rice distribution或Rician distribution)是一種連續機率分佈,以美國科學家斯蒂芬·萊斯英語Stephen O. Rice的名字命名,其機率密度函數為:

Rice
機率密度函數
Rice probability density functions σ=1.0
Rice probability density functions for various v   with σ=1.
Rice probability density functions σ=0.25
Rice probability density functions for various v   with σ=0.25.
累積分佈函數
Rice cumulative density functions σ=1.0
Rice cumulative density functions for various v   with σ=1.
Rice cumulative density functions σ=0.25
Rice cumulative density functions for various v   with σ=0.25.
參數
值域
機率密度函數
期望值
變異數
偏度 (complicated)
峰度 (complicated)

其中是修正的第一類零階貝索函數(Bessel function)。當時,萊斯分佈退化為瑞利分佈

極限情況

編輯

For large values of the argument, the Laguerre polynomial becomes (See Abramowitz and Stegun §13.5.1頁面存檔備份,存於互聯網檔案館))

 

It is seen that as   becomes large or   becomes small the mean becomes   and the variance becomes  

相關條目

編輯

外部連結

編輯