铋-209209Bi)是同位素之一,具有极微弱的放射性半衰期长达2.01×1019年,是铋最稳定的同位素,也是所有发生α衰变放射性同位素中已知半衰期最长的。它有83个质子和126个中子,原子质量为208.9803987原子质量单位。其中子数126为幻数,因此具有特别的稳定性。铋-209是铋最普遍的同位素,几乎占天然铋的100%。

铋-209,209Bi
基本
符号209Bi
名称铋-209、Bi-209
原子序83
中子数126
核素数据
丰度100%
半衰期2.01×1019[1]
母同位素209Pb (β)
209Po (β+)
213At (α)
衰变产物205Tl
原子量208.9803987 u
自旋9/2−
过剩能量−18 258.461± 2.4 keV
结合能7847.987± 1.7 keV
衰变模式
衰变类型衰变能量MeV
α衰变3.1373
铋的同位素
完整核素表

衰变特性

编辑

长期以来,人们认为铋-209是所有元素中最重的稳定同位素,但2003年,法国奥赛天体物理和空间研究所的一个研究小组发现209Bi具有放射性,其发生α衰变半衰期约为1.9×1019[2][3],超过宇宙年龄的十亿倍。[4]现在公认最稳定的最大质量数核素铅-208

在不受外界影响的情况下,铋-209衰变产生3.14兆电子伏的α粒子,并嬗变铊-205[5]

 

在人工干预下(比如在反应堆中或使用加速器),铋-209可以参加铅-铋中子俘获循环。铅-206/207/208直到铋-209都可以参加这一循环,但是俘获截面都相当低。[6][7]

由于铋-209超长的半衰期,对于其应用来说,209Bi仍然可以被当作非放射性物质处理。它的放射性比人体的放射性低得多,因此不会造成任何意义上的辐射伤害。虽然209Bi创造了α衰变的半衰期记录,但其半衰期并不是实验上确认的放射性核素中最长的;这一殊荣属于-128(128Te),其双β衰变的半衰期估计为7.7×1024年。[8]而当今宇宙年龄不过为(1.3799±0.021)×1010年。[9][10]

2012年,意大利大萨索国家实验室(Laboratori Nazionali del Gran Sasso)团队验证了铋-209α衰变的半衰期值,他们报告的数据是(2.01±0.08)×1019年。他们还发现了铋-209经α衰变到铊-205的第二种路径,即从铋-209衰变为铊-205第一激发态。这个反应的半衰期更长,估计为1.66×1021年。[11]尽管这两个半衰期都比碲-128的半衰期短,但其α粒子能谱的半峰宽是目前观测到最小的,根据海森堡测不准原理估计分别为ΔΕ~5.5×10-43eV和ΔΕ~1.3×10-44eV。[12]

用途

编辑

因为天然铋完全由铋-209组成,所以所有铋的用途都可看作是铋-209的用途,如的替代品、[13][14]化妆品、[15][16]油漆[17]和像是次水杨酸铋的药物。[4][18][19]

合成其它元素

编辑

210Po可通过在核反应堆中用中子轰击209Bi来制造[20],全世界每年210Po的产量约为100克左右。[21][20]209Po和208Po则可由质子轰击209Bi而成。[22]用α粒子轰击209Bi则能得到[23][24][25]

209Bi也可用于合成如𬭊[26][27][28][29]𬭛[26][30][31][32][33]𬬭[34][35][36][37][38][39]超重元素

核合成

编辑

渐近巨星支红巨星中,铋-209和钋-210经由S-过程(慢速过程)通过中子俘获而形成。此二核素是S-过程产生的最重元素。所有比它们更重的元素都是在R-过程(快速过程)中形成的,该过程发生在超新星爆发前十五分钟。[40]

参见

编辑

脚注

编辑
相邻较轻同位素:
铋-208
铋-209是
同位素
相邻较重同位素:
铋-210
母同位素
砹-213 (α)
钋-209 (β+)
铅-209 (β)
铋-209的
衰变链
衰变产物
铊-205 (α)

参考文献

编辑
  1. ^ Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. The NUBASE2016 evaluation of nuclear properties (PDF). Chinese Physics C. 2017, 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001. 
  2. ^ Dumé, Belle. Bismuth breaks half-life record for alpha decay. Physicsweb. 2003-04-23 [2020-12-18]. (原始内容存档于2017-12-13). 
  3. ^ Marcillac, Pierre de; Noël Coron; Gérard Dambier; Jacques Leblanc; Jean-Pierre Moalic. Experimental detection of α-particles from the radioactive decay of natural bismuth. Nature. April 2003, 422 (6934): 876–878. Bibcode:2003Natur.422..876D. PMID 12712201. doi:10.1038/nature01541. 
  4. ^ 4.0 4.1 Kean, Sam. The Disappearing Spoon (and other true tales of madness, love, and the history of the world from the Periodic Table of Elements). New York/Boston: Back Bay Books. 2011: 158–160. ISBN 978-0-316-051637. 
  5. ^ Isotope data for americium-241 in the Periodic Table. [2020-12-18]. (原始内容存档于2021-04-14). 
  6. ^ Philip A. Seeger; William A. Fowler; Donald D. Clayton. Nucleosynthesis of Heavy Elements by Neutron Capture. clemson.edu. NASA. [2020-12-21]. (原始内容存档于2021-04-28). 
  7. ^ D.D Clayton; W.A Fowler; T.E Hull; B.A Zimmerman. Neutron capture chains in heavy element synthesis. Annals of Physics: 331–408. doi:10.1016/0003-4916(61)90067-7. 
  8. ^ Archived copy. [2013-01-10]. (原始内容存档于2011-09-28).  Tellurium-128 information and half-life. Accessed July 14, 2009.
  9. ^ Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters (See PDF, page 32, Table 4, Age/Gyr, last column).. Astronomy & Astrophysics. 2016, 594: A13. Bibcode:2016A&A...594A..13P. arXiv:1502.01589 . doi:10.1051/0004-6361/201525830. 
  10. ^ Lawrence, C. R. Planck 2015 Results (PDF). 2015-03-18 [2016-11-24]. (原始内容 (PDF)存档于2016-11-24). 
  11. ^ J.W. Beeman; et al. First Measurement of the Partial Widths of 209Bi Decay to the Ground and to the First Excited States. Physical Review Letters. 2012, 108 (6): 062501. PMID 22401058. arXiv:1110.3138 . doi:10.1103/PhysRevLett.108.062501. 
  12. ^ Particle lifetimes from the uncertainty principle. [2020-12-18]. (原始内容存档于2020-11-12). 
  13. ^ Hopper KD; King SH; Lobell ME; TenHave TR; Weaver JS. The breast: inplane x-ray protection during diagnostic thoracic CT—shielding with bismuth radioprotective garments. Radiology. 1997, 205 (3): 853–8. PMID 9393547. doi:10.1148/radiology.205.3.9393547. 
  14. ^ Lohse, Joachim; Zangl, Stéphanie; Groß, Rita; Gensch, Carl-Otto; Deubzer, Otmar. Adaptation to Scientific and Technical Progress of Annex II Directive 2000/53/EC (PDF). European Commission. September 2007 [11 September 2009]. (原始内容存档 (PDF)于2020-07-31). 
  15. ^ Maile, Frank J.; Pfaff, Gerhard; Reynders, Peter. Effect pigments—past, present and future. Progress in Organic Coatings. 2005, 54 (3): 150. doi:10.1016/j.porgcoat.2005.07.003. 
  16. ^ Pfaff, Gerhard. Special effect pigments: Technical basics and applications. Vincentz Network GmbH. 2008: 36. ISBN 978-3-86630-905-0. 
  17. ^ B. Gunter "Inorganic Colored Pigments” in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2012.
  18. ^ Madisch A, Morgner A, Stolte M, Miehlke S. Investigational treatment options in microscopic colitis. Expert Opinion on Investigational Drugs. December 2008, 17 (12): 1829–37. PMID 19012499. S2CID 72294495. doi:10.1517/13543780802514500. 
  19. ^ Merck Index, 11th Edition, 1299
  20. ^ 20.0 20.1 Roessler, G. Why 210Po? (PDF). Health Physics News. Vol. 35 no. 2 (Health Physics Society). 2007 [2019-06-20]. (原始内容存档 (PDF)于2014-04-03). 
  21. ^ Swiss study: Polonium found in Arafat's bones. Al Jazeera. [2013-11-07]. (原始内容存档于2020-05-26). 
  22. ^ Carvalho, F.; Fernandes, S.; Fesenko, S.; Holm, E.; Howard, B.; Martin, P.; Phaneuf, P.; Porcelli, D.; Pröhl, G.; Twining, J. The Environmental Behaviour of Polonium. Technical reports series 484. Vienna: International Atomic Energy Agency. 2017: 22. ISBN 978-92-0-112116-5. ISSN 0074-1914. 
  23. ^ Barton, G. W.; Ghiorso, A.; Perlman, I. Radioactivity of Astatine Isotopes. Physical Review. 1951, 82 (1): 13–19 [2022-12-23]. Bibcode:1951PhRv...82...13B. doi:10.1103/PhysRev.82.13. hdl:2027/mdp.39015086480574. (原始内容存档于2021-04-10).  
  24. ^ Larsen, R. H.; Wieland, B. W.; Zalutsky, M. R. J. Evaluation of an Internal Cyclotron Target for the Production of 211At via the 209Bi (α,2n)211At reaction. Applied Radiation and Isotopes. 1996, 47 (2): 135–143. PMID 8852627. doi:10.1016/0969-8043(95)00285-5. 
  25. ^ Nefedov, V. D.; Norseev, Yu. V.; Toropova, M. A.; Khalkin, Vladimir A. Astatine. Russian Chemical Reviews. 1968, 37 (2): 87–98. Bibcode:1968RuCRv..37...87N. S2CID 250775410. doi:10.1070/RC1968v037n02ABEH001603.   
  26. ^ 26.0 26.1 Munzenberg; Hofmann, S.; Heßberger, F. P.; Reisdorf, W.; Schmidt, K. H.; Schneider, J. H. R.; Armbruster, P.; Sahm, C. C.; Thuma, B. Identification of element 107 by α correlation chains. Z. Phys. A. 1981, 300 (1): 107–108. Bibcode:1981ZPhyA.300..107M. S2CID 118312056. doi:10.1007/BF01412623. 
  27. ^ Hessberger, F. P.; Münzenberg, G.; Hofmann, S.; Agarwal, Y. K.; Poppensieker, K.; Reisdorf, W.; Schmidt, K.-H.; Schneider, J. R. H.; Schneider, W. F. W.; Schött, H. J.; Armbruster, P.; Thuma, B.; Sahm, C.-C.; Vermeulen, D. The new isotopes 258105,257105,254Lr and 253Lr. Z. Phys. A. 1985, 322 (4): 4. Bibcode:1985ZPhyA.322..557H. S2CID 100784990. doi:10.1007/BF01415134. 
  28. ^ F. P. Hessberger; Hofmann, S.; Ackermann, D.; Ninov, V.; Leino, M.; Münzenberg, G.; Saro, S.; Lavrentev, A.; Popeko, A.G.; Yeremin, A.V.; Stodel, Ch. Decay properties of neutron-deficient isotopes 256,257Db,255Rf, 252,253Lr. Eur. Phys. J. A. 2001, 12 (1): 57–67. Bibcode:2001EPJA...12...57H. S2CID 117896888. doi:10.1007/s100500170039. (原始内容存档于2002-05-10). 
  29. ^ Leppänen, A.-P. Alpha-decay and decay-tagging studies of heavy elements using the RITU separator (PDF) (学位论文). University of Jyväskylä: 83–100. 2005 [2022-12-23]. ISBN 978-951-39-3162-9. ISSN 0075-465X. (原始内容存档 (PDF)于2022-03-17). 
  30. ^ Nelson, S.; Gregorich, K.; Dragojević, I.; Garcia, M.; Gates, J.; Sudowe, R.; Nitsche, H. Lightest Isotope of Bh Produced via the Bi209(Cr52,n)Bh260 Reaction. Physical Review Letters. 2008, 100 (2): 22501. Bibcode:2008PhRvL.100b2501N. PMID 18232860. S2CID 1242390. doi:10.1103/PhysRevLett.100.022501. 
  31. ^ Münzenberg, G.; et al. Observation of one correlated α-decay in the reaction 58Fe on 209Bi→267109. Zeitschrift für Physik A. 1982, 309 (1): 89–90. Bibcode:1982ZPhyA.309...89M. S2CID 120062541. doi:10.1007/BF01420157. 
  32. ^ Münzenberg, G.; Hofmann, S.; Heßberger, F. P.; et al. New results on element 109. Zeitschrift für Physik A. 1988, 330 (4): 435–436. Bibcode:1988ZPhyA.330..435M. S2CID 121364541. doi:10.1007/BF01290131. 
  33. ^ Hofmann, S.; Heßberger, F. P.; Ninov, V.; et al. Excitation function for the production of 265108 and 266109. Zeitschrift für Physik A. 1997, 358 (4): 377–378. Bibcode:1997ZPhyA.358..377H. S2CID 124304673. doi:10.1007/s002180050343. 
  34. ^ Hofmann, S.; Ninov, V.; Heßberger, F. P.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G.; et al. The new element 111. Zeitschrift für Physik A. 1995, 350 (4): 281–282. Bibcode:1995ZPhyA.350..281H. S2CID 18804192. doi:10.1007/BF01291182. 
  35. ^ Hofmann, S.; Heßberger, F. P.; Ackermann, D.; Münzenberg, G.; Antalic, S.; Cagarda, P.; Kindler, B.; Kojouharova, J.; et al. New results on elements 111 and 112. The European Physical Journal A. 2002, 14 (2): 147–157. Bibcode:2002EPJA...14..147H. S2CID 8773326. doi:10.1140/epja/i2001-10119-x. 
  36. ^ Morita, K.; Morimoto, K. K.; Kaji, D.; Goto, S.; Haba, H.; Ideguchi, E.; Kanungo, R.; Katori, K.; Koura, H.; Kudo, H.; Ohnishi, T.; Ozawa, A.; Peter, J. C.; Suda, T.; Sueki, K.; Tanihata, I.; Tokanai, F.; Xu, H.; Yeremin, A. V.; Yoneda, A.; Yoshida, A.; Zhao, Y.-L.; Zheng, T. Status of heavy element research using GARIS at RIKEN. Nuclear Physics A. 2004, 734: 101–108. Bibcode:2004NuPhA.734..101M. doi:10.1016/j.nuclphysa.2004.01.019. 
  37. ^ Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-Ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna; et al. Experiment on the Synthesis of Element 113 in the Reaction 209Bi(70Zn, n)278113. Journal of the Physical Society of Japan. 2004, 73 (10): 2593–2596. Bibcode:2004JPSJ...73.2593M. doi:10.1143/JPSJ.73.2593 . 
  38. ^ Barber, Robert C.; Karol, Paul J; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich W. Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report). Pure and Applied Chemistry. 2011, 83 (7): 1485. doi:10.1351/PAC-REP-10-05-01 . 
  39. ^ K. Morita; Morimoto, Kouji; Kaji, Daiya; Haba, Hiromitsu; Ozeki, Kazutaka; Kudou, Yuki; Sumita, Takayuki; Wakabayashi, Yasuo; Yoneda, Akira; Tanaka, Kengo; et al. New Results in the Production and Decay of an Isotope, 278113, of the 113th Element. Journal of the Physical Society of Japan. 2012, 81 (10): 103201. Bibcode:2012JPSJ...81j3201M. S2CID 119217928. arXiv:1209.6431 . doi:10.1143/JPSJ.81.103201. 
  40. ^ Chaisson, Eric, and Steve McMillan. Astronomy Today. 6th ed. San Francisco: Pearson Education, 2008.