多项式馀式定理(英语:Polynomial remainder theorem)是指一个多项式除以一线性多项式馀式

定义

编辑

我们可以一般化多项式馀式定理。如果 的商式是 、馀式是 ,那么 。其中 的次数会小于 的次数。例如, 的馀式是 。又可以说是把除式的零点代入被除式所得的值是馀式。

至于除式为2次以上时,可将n次除式的  列出联立方程:

 

其中 是被除式, 是馀式。

此方法只可用在除式不是任一多项式的 次方。

推导

编辑

多项式馀式定理可由多项式除法的定义导出.根据多项式除法的定义,设被除式为 ,除式为 ,商式为 ,余式为 ,则有:

 

如果 是一次式 ,则 的次数小于一,因此, 只能为常数,这时,余式也叫余数,记为 ,即有:

 

根据上式,当 时,有:

 

因此,我们得到了余式定理:多项式 除以 所得的余式等于 

参见

编辑