拉廷格定理
拉廷格定理是凝聚態物理學的電子輸運領域的一個具有廣泛意義的結論,於1960年由J·M·拉廷格和J·C·沃德提出。[1][2] 它在電子關聯的理論模型中經常出現,如高溫超導體,以及光電效應(金屬的費米面可在其中被直接觀測到)。
定義
編輯拉廷格定理表明,材料費米面所包含的體積和粒子密度呈正相關關係。
雖然該定理是泡利不相容原理對於非相互作用粒子的直接結論,但如果恰當地定義了費米面和粒子密度,在考慮粒子間相互作用時該定理也能成立,即費米面必須根據以下準則被定義:
- 或
其中 為自變量為頻率和動量的單粒子格林函數。於是,拉廷格定理可變形為以下形式[3]:
其中 與上面的定義一致, 表示在 -維 -空間的微分體積單元。
另見
編輯參考資料
編輯- ^ Luttinger, J. M.; Ward, J. C. Ground-State Energy of a Many-Fermion System. II. Physical Review. 1960, 118 (5): 1417–1427. Bibcode:1960PhRv..118.1417L. doi:10.1103/PhysRev.118.1417.
- ^ Luttinger, J. M. Fermi Surface and Some Simple Equilibrium Properties of a System of Interacting Fermions. Physical Review. 1960, 119 (4): 1153–1163. Bibcode:1960PhRv..119.1153L. doi:10.1103/PhysRev.119.1153.
- ^ Alexei M. Tsvelik. Quantum Field Theory in Condensed Matter Physics 2nd. Cambridge University Press. 2003: 327. ISBN 978-0-521-82284-8.
延伸閱讀
編輯- Kiaran B. Dave; Philip W. Phillips; Charles L. Kane. Absence of Luttinger's theorem. Physical Review Letters. 2012, 110 (9): 090403. Bibcode:2013PhRvL.110i0403D. PMID 23496693. arXiv:1207.4201 . doi:10.1103/PhysRevLett.110.090403.
- M. Oshikawa. Topological Approach to Luttinger's Theorem and the Fermi Surface of a Kondo Lattice. Physical Review Letters. 2000, 84 (15): 3370–3373. Bibcode:2000PhRvL..84.3370O. PMID 11019092. arXiv:cond-mat/0002392 . doi:10.1103/PhysRevLett.84.3370.
- Mastropietro, Vieri; Mattis, Daniel C. Luttinger Model: The First 50 Years and Some New Directions. Series on Directions in Condensed Matter Physics 20. World Scientific. 2013. Bibcode:2013SDCMP..20.....M. ISBN 978-981-4520-71-3. doi:10.1142/8875.
- F. D. M. Haldane. Luttinger's Theorem and Bosonization of the Fermi Surface. R. A. Broglia and J. R. Schrieffer (編). Proceedings of the International School of Physics "Enrico Fermi", Course CXXI "Perspectives in Many-Particle Physics". North-Holland: 5–29. 2005. Bibcode:2005cond.mat..5529H. arXiv:cond-mat/0505529 .