早三疊世三疊紀三個之首,自251.902Ma持續到247.2Ma (百萬年前)。這一世的岩石統稱為下三疊統

早三疊世
251.902 ± 0.024 – 247.2 百萬年前
下三疊統砂岩
地質年代
三疊紀主要分界
-250 —
-245 —
-240 —
-235 —
-230 —
-225 —
-220 —
-215 —
-210 —
-205 —
-200 —
三疊紀時間表
直軸:百萬年前
詞源
年代地層名稱上三疊統
地質年代名稱早三疊世
名稱是否正式Formal
具體信息
天體地球
適用區域全球(ICS)
適用時標ICS時間表
定義
地質年代單位
年代地層單位
名稱是否正式正式
下邊界定義牙形石物種小欣德牙形石首次出現
下邊界GSSP位置中國浙江梅山
31°04′47″N 119°42′21″E / 31.0798°N 119.7058°E / 31.0798; 119.7058
GSSP批准時間2001[3]:102–114
上邊界定義未正式定義
候選的定義上邊界
  • 牙形石物種Chiosella timorensis首次出現
  • MT1n地磁帶的基底
上邊界GSSP候選

早三疊世是中生代的第一個世,它之前是樂平世(古生代晚二疊世),之後是中三疊世。早三疊世可被分為印度期奧倫尼剋期。印度期又可分為格里斯巴赫期迪納爾期,奧倫尼剋期也可分為史密斯期斯派思期[4]

下三疊統在以前也被稱為斯基泰階。在歐洲,下三疊統的大部分由斑砂岩統組成,它是一個陸上紅層岩石地層學單位。

生物圈歷經早三疊世和一部分中三疊世,才從地球史上規模最大的滅絕事件——二疊紀-三疊紀滅絕事件中恢復過來。第二次滅絕事件——史密斯-斯派斯期邊界事件發生在奧倫尼剋期。[5]

氣候

編輯
 
普托拉納高原西伯利亞暗色岩玄武岩組成。

早三疊世的氣候(特別是盤古大陸內部)相當乾旱少雨,沙漠廣布;極地則表現溫帶氣候。以菊石的分布為依據推測,共時來看,極地到赤道的溫度梯度相當平坦,可能使得熱帶物種可以輕易擴張到極地。[6]:374–395

早三疊世大多數炎熱氣候[7]:1–10都可能由西伯利亞暗色岩的火山活動導致,這也是二疊紀-三疊紀滅絕事件的主要成因,並加速了全球變暖的速度。研究發現早三疊世的氣候變化無常,常常出現相比之下幅度、速度都很大的溫度變化,引發史密斯-斯派斯期邊界事件。[8]:57–60[9]:366–370[10][11]:169–178

生物

編輯

動植物相

編輯

二疊紀-三疊紀滅絕事件同時終結了二疊紀和古生代,使得倖存生物的生活相當艱難。

早三疊世的生物逐漸從滅絕事件中恢復過來,受滅絕事件嚴重程度和早三疊世嚴酷氣候的影響,恢復過程花了數百萬年。[12]許多珊瑚腕足動物軟體動物棘皮動物和其他一些無脊椎動物滅絕了。二疊紀南半球的植被由舌羊齒屬統治,三疊紀也不復存在了。[13]:28372輻鰭魚等其他種群似乎受到滅絕事件影響較小,[14]:348–362體型似乎不是滅絕期間的選擇性因子。[15]:106–147[16]:727–741海洋中和陸地上的生態恢復呈現不同的模式。受大滅絕影響,早三疊世動物相缺乏生物多樣性,且高度同質。陸上生態恢復花了3000萬年。[17]:759–765

陸地生物群

編輯

最普遍的陸生脊椎動物是一種小型植食性動物——合弓綱水龍獸屬。水龍獸廣泛分布在盤古大陸上,很多人認為它是大滅絕後的先鋒生物(常被反對[18]:610463)。它和非哺乳類犬齒獸亞目鼩龍獸屬三尖叉齒獸屬同時出現於盤古大陸南部。主龍形類也在這時出現,代表性物種為引鱷屬(奧倫尼剋期-拉丁期)。[19]:188這個群體包括鱷科恐龍(包括鳥類)的祖先。恐龍形態類的腳印化石在奧倫尼剋期已有。[20]:1107–1113

三疊紀剛開始時,植物相裸子植物為主,後來在格里斯巴赫-迪納爾期生態危機階段快速變化為石松為主(如肋木屬)。這一變化與二疊紀舌羊齒屬植物相的滅絕剛好重合。[13]斯派斯期,植物相變回裸子植物和羊齒植物為主。[21]:911–924這些變化反映全球降水和溫度的變化。[13]

海洋生物群

編輯

在海洋中,最普遍的早三疊世海生硬殼無脊椎動物是雙殼綱腹足綱菊石海膽,以及幾種腕足動物。最早的牡蠣出現於早三疊世,生長在菊石的殼上。[22]:253–260微生物岩礁很普遍,可能是因為與後生動物礁缺乏競爭。[23]:62–74不過,在環境允許的情況下,短暫的後生動物礁在奧倫尼剋期重新出現了。[24]:693–697菊石在大量死亡後,於早三疊世展現全面繁盛的狀況。[25]:1118–1121

水生脊椎動物在大滅絕後發生分化。

魚類:典型三疊紀輻鰭魚類,如南方魚比耶魚古鯧屬錐體魚屬翼鱈屬副半椎魚科龍魚屬在靠近二疊紀-三疊紀交界處出現,而新鰭亞綱則在稍後才展現出高多樣性。[15]許多魚類物種在早三疊世都有廣泛分布。腔棘魚綱多樣性達到峰值,並展現出多樣的生活姿態(叛逆腔棘魚屬)。軟骨魚綱古貝茨無尖齒魚屬滑齒鯊屬、部分板鰓亞綱弓鯊目物種,以及尤金齒目最後的倖存者(卡士尼鯊屬法登鯊屬)。

兩棲動物:相對大型的海生離片椎類兩棲動物,如隱次龍旺扎螈,再印度期奧倫尼剋期覆蓋了相當大的地域。這些鱷形兩棲類的化石分布在格陵蘭斯匹次卑爾根島巴基斯坦馬達加斯加

爬行動物:在海洋中,最早的水生爬行動物在早三疊世出現。[26]:e88987它們的後代在中生代主宰了海洋。湖北鱷目魚龍超目鰭龍超目是奧倫尼剋期最早一批海洋爬行動物(如短吻龍屬巢湖龍屬歌津魚龍屬湖北鱷短尾魚龍屬短頭魚龍屬瞳龍屬)。其他海洋爬行動物,如長頸龍屬瑞士龍屬濾齒龍屬楯齒龍目海龍目則保持到中三疊世。[26]安尼期魚龍目海帝魚龍屬是最早的海洋主要掠食者之一,可以捕食與自身體型相近的獵物,它占據的生態位可以和今日的逆戟鯨比擬。[27]:1393–1397

史密斯-斯派斯期邊界事件

編輯

早三疊世奧倫尼剋期發生一次重要的滅絕事件,其時間靠近史密斯期和斯派斯期的界限。這次滅絕事件的主要受害者[28]菊石牙形石,以及幾種在二疊紀—三疊紀滅絕事件後倖存的古生代合弓綱物種,包括二齒獸類(比如三疊紀早期曾構成陸生動物四分之三的水龍獸)和獸頭類(如三疊紀早期的頂級掠食者麝喙獸)。在史密斯-斯派斯期邊界事件後,蜥形綱主龍類偽鱷演替成為優勢陸生動物,魚龍鰭龍海洋爬行動物也在這次滅絕後迅速多樣化。

植物相也變化劇烈。它從印度期和史密斯期以石松(如肋木屬)為主,變為斯派斯期以裸子植物羊齒植物為主。[21]:911–924[29]:169–178這些變化是全球氣溫和降水變化的反映。松柏門中生代大多數時候的主要植物。直到最近,這次發生於約249.4 Ma[30]:1–16的滅絕事件才得以確認其存在。[31]

 
早三疊世和安尼期海洋捕食者:[26] 1. 旺扎螈;2. 法登龍屬;3. 龍魚屬;4. 叛逆腔棘魚屬;5. 霍瓦蜥屬;6. 比耶魚屬;7. 隱次龍;8. 古鯧屬;9. 弓鯊目;10. Mylacanthus;11. 長頸龍屬;12. 瞳龍屬;13. Ticinepomis;14. 混魚龍屬;15. 杯椎魚龍科;16. 新鯊類;17. 短頭魚龍屬骨架;18. 楯齒龍屬

史密斯-斯派斯期邊界事件與西伯利亞暗色岩的晚期噴發有關,反映為全球變暖[8]牙形石氧同位素的研究發現,溫度可能在三疊紀最初200萬年迅速升高,最終使得史密斯期熱帶海平面溫度達到40°C。[32]滅絕事件本身發生於晚史密斯期,當時全球氣溫又突然下降;不過僅靠氣溫不足以形成史密斯-斯派斯期邊界事件,還有好幾個其他因素同時起作用。[10][30]:1–16

在海洋中,許多大型動物都不再分布於熱帶,僅剩一些大型魚類,[33]:1025–1046和一些無法移動的軟體動物。只有能對抗高溫的物種存活了下來,約一半的雙殼綱物種滅絕。[34]在陸地上,回歸線附近幾乎不存在肉眼可見的生物。[9]

也存在生命迅速恢復的證據,儘管它們也僅是地方性的。有些地區有異乎尋常的高生物多樣性(如最早的斯派斯期巴黎生物區),[35]:e1602159[36]:19657這支持複雜的食物網和多重營養級

另見

編輯

參考

編輯
  1. ^ McElwain, J. C.; Punyasena, S. W. Mass extinction events and the plant fossil record. Trends in Ecology & Evolution. 2007, 22 (10): 548–557. PMID 17919771. doi:10.1016/j.tree.2007.09.003. 
  2. ^ Payne, J. L.; Lehrmann, D. J.; Wei, J.; Orchard, M. J.; Schrag, D. P.; Knoll, A. H. Large Perturbations of the Carbon Cycle During Recovery from the End-Permian Extinction. Science. 2004, 305 (5683): 506–9. PMID 15273391. doi:10.1126/science.1097023. 
  3. ^ Hongfu, Yin; Kexin, Zhang; Jinnan, Tong; Zunyi, Yang; Shunbao, Wu. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary (PDF). Episodes. June 2001, 24 (2) [8 December 2020]. doi:10.18814/epiiugs/2001/v24i2/004 . (原始內容存檔 (PDF)於2021-08-28). 
  4. ^ Tozer, Edward T. Lower Triassic stages and ammonoid zones of arctic Canada. Geological Survey of Canada. 1965. OCLC 606894884. 
  5. ^ Widmann, Philipp; Bucher, Hugo; Leu, Marc; Vennemann, Torsten; Bagherpour, Borhan; Schneebeli-Hermann, Elke; Goudemand, Nicolas; Schaltegger, Urs. Dynamics of the Largest Carbon Isotope Excursion During the Early Triassic Biotic Recovery. Frontiers in Earth Science. 2020, 8 (196): 1–16. doi:10.3389/feart.2020.00196 . 
  6. ^ Brayard, Arnaud; Bucher, Hugo; Escarguel, Gilles; Fluteau, Frédéric; Bourquin, Sylvie; Galfetti, Thomas. The Early Triassic ammonoid recovery: Paleoclimatic significance of diversity gradients. Palaeogeography, Palaeoclimatology, Palaeoecology. September 2006, 239 (3–4). Bibcode:2006PPP...239..374B. doi:10.1016/j.palaeo.2006.02.003. 
  7. ^ Preto, Nereo; Kustatscher, Evelyn; Wignall, Paul B. Triassic climates — State of the art and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology. April 2010, 290 (1–4). doi:10.1016/j.palaeo.2010.03.015. 
  8. ^ 8.0 8.1 Romano, Carlo; Goudemand, Nicolas; Vennemann, Torsten W.; Ware, David; Schneebeli-Hermann, Elke; Hochuli, Peter A.; Brühwiler, Thomas; Brinkmann, Winand; Bucher, Hugo. Climatic and biotic upheavals following the end-Permian mass extinction. Nature Geoscience. 21 December 2012, 6 (1). S2CID 129296231. doi:10.1038/ngeo1667. 
  9. ^ 9.0 9.1 Sun, Y.; Joachimski, M. M.; Wignall, P. B.; Yan, C.; Chen, Y.; Jiang, H.; Wang, L.; Lai, X. Lethally Hot Temperatures During the Early Triassic Greenhouse. Science. 18 October 2012, 338 (6105). Bibcode:2012Sci...338..366S. PMID 23087244. S2CID 41302171. doi:10.1126/science.1224126. 
  10. ^ 10.0 10.1 Goudemand, Nicolas; Romano, Carlo; Leu, Marc; Bucher, Hugo; Trotter, Julie A.; Williams, Ian S. Dynamic interplay between climate and marine biodiversity upheavals during the early Triassic Smithian -Spathian biotic crisis. Earth-Science Reviews. August 2019, 195. Bibcode:2019ESRv..195..169G. doi:10.1016/j.earscirev.2019.01.013 . 
  11. ^ Schneebeli-Hermann, Elke. Regime Shifts in an Early Triassic Subtropical Ecosystem. Frontiers in Earth Science. December 2020, 8: 588696. doi:10.3389/feart.2020.588696 . 
  12. ^ Chen, Zhong-Qiang; Benton, Michael J. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience. 27 May 2012, 5 (6): 375–383. Bibcode:2012NatGe...5..375C. doi:10.1038/ngeo1475. 
  13. ^ 13.0 13.1 13.2 Hochuli, Peter A.; Sanson-Barrera, Anna; Schneebeli-Hermann, Elke; Bucher, Hugo. Severest crisis overlooked—Worst disruption of terrestrial environments postdates the Permian–Triassic mass extinction. Scientific Reports. 24 June 2016, 6 (1). Bibcode:2016NatSR...628372H. PMC 4920029 . PMID 27340926. doi:10.1038/srep28372. 
  14. ^ Smithwick, Fiann M.; Stubbs, Thomas L. Phanerozoic survivors: Actinopterygian evolution through the Permo‐Triassic and Triassic‐Jurassic mass extinction events. Evolution. 2 February 2018, 72 (2). PMC 5817399 . PMID 29315531. doi:10.1111/evo.13421 . 
  15. ^ 15.0 15.1 Romano, Carlo; Koot, Martha B.; Kogan, Ilja; Brayard, Arnaud; Minikh, Alla V.; Brinkmann, Winand; Bucher, Hugo; Kriwet, Jürgen. Permian-Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution. Biological Reviews. February 2016, 91 (1). PMID 25431138. S2CID 5332637. doi:10.1111/brv.12161. 
  16. ^ Puttick, Mark N.; Kriwet, Jürgen; Wen, Wen; Hu, Shixue; Thomas, Gavin H.; Benton, Michael J.; Angielczyk, Kenneth. Body length of bony fishes was not a selective factor during the biggest mass extinction of all time. Palaeontology. September 2017, 60 (5). doi:10.1111/pala.12309 . 
  17. ^ Sahney, Sarda; Benton, Michael J. Recovery from the most profound mass extinction of all time. Proceedings of the Royal Society B: Biological Sciences. 15 January 2008, 275 (1636). PMC 2596898 . PMID 18198148. doi:10.1098/rspb.2007.1370. 
  18. ^ Modesto, Sean P. The Disaster Taxon Lystrosaurus: A Paleontological Myth. Frontiers in Earth Science. December 2020, 8. doi:10.3389/feart.2020.610463 . 
  19. ^ Foth, Christian; Ezcurra, Martín D.; Sookias, Roland B.; Brusatte, Stephen L.; Butler, Richard J. Unappreciated diversification of stem archosaurs during the Middle Triassic predated the dominance of dinosaurs. BMC Evolutionary Biology. 15 September 2016, 16 (1). PMC 5024528 . PMID 27628503. doi:10.1186/s12862-016-0761-6 . 
  20. ^ Brusatte, Stephen L.; Niedźwiedzki, Grzegorz; Butler, Richard J. Footprints pull origin and diversification of dinosaur stem lineage deep into Early Triassic. Proceedings of the Royal Society B: Biological Sciences. 6 October 2010, 278 (1708). PMC 3049033 . PMID 20926435. doi:10.1098/rspb.2010.1746 . 
  21. ^ 21.0 21.1 Schneebeli-Hermann, Elke; Kürschner, Wolfram M.; Kerp, Hans; Bomfleur, Benjamin; Hochuli, Peter A.; Bucher, Hugo; Ware, David; Roohi, Ghazala. Vegetation history across the Permian–Triassic boundary in Pakistan (Amb section, Salt Range). Gondwana Research. April 2015, 27 (3). Bibcode:2015GondR..27..911S. doi:10.1016/j.gr.2013.11.007. 
  22. ^ Hautmann, Michael; Ware, David; Bucher, Hugo. Geologically oldest oysters were epizoans on Early Triassic ammonoids. Journal of Molluscan Studies. August 2017, 83 (3). doi:10.1093/mollus/eyx018 . 
  23. ^ Foster, William J.; Heindel, Katrin; Richoz, Sylvain; Gliwa, Jana; Lehrmann, Daniel J.; Baud, Aymon; Kolar‐Jurkovšek, Tea; Aljinović, Dunja; Jurkovšek, Bogdan; Korn, Dieter; Martindale, Rowan C.; Peckmann, Jörn. Suppressed competitive exclusion enabled the proliferation of Permian/Triassic boundary microbialites. The Depositional Record. 20 November 2019, 6 (1). PMC 7043383 . PMID 32140241. doi:10.1002/dep2.97 . 
  24. ^ Brayard, Arnaud; Vennin, Emmanuelle; Olivier, Nicolas; Bylund, Kevin G.; Jenks, Jim; Stephen, Daniel A.; Bucher, Hugo; Hofmann, Richard; Goudemand, Nicolas; Escarguel, Gilles. Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nature Geoscience. 18 September 2011, 4 (10). Bibcode:2011NatGe...4..693B. doi:10.1038/ngeo1264. 
  25. ^ Brayard, A.; Escarguel, G.; Bucher, H.; Monnet, C.; Bruhwiler, T.; Goudemand, N.; Galfetti, T.; Guex, J. Good Genes and Good Luck: Ammonoid Diversity and the End-Permian Mass Extinction. Science. 27 August 2009, 325 (5944). Bibcode:2009Sci...325.1118B. PMID 19713525. S2CID 1287762. doi:10.1126/science.1174638. 
  26. ^ 26.0 26.1 26.2 Scheyer, Torsten M.; Romano, Carlo; Jenks, Jim; Bucher, Hugo. Early Triassic Marine Biotic Recovery: The Predators' Perspective. PLOS ONE. 19 March 2014, 9 (3). Bibcode:2014PLoSO...988987S. PMC 3960099 . PMID 24647136. doi:10.1371/journal.pone.0088987 . 
  27. ^ Fröbisch, Nadia B.; Fröbisch, Jörg; Sander, P. Martin; Schmitz, Lars; Rieppel, Olivier. Macropredatory ichthyosaur from the Middle Triassic and the origin of modern trophic networks. Proceedings of the National Academy of Sciences. 22 January 2013, 110 (4). Bibcode:2013PNAS..110.1393F. PMC 3557033 . PMID 23297200. doi:10.1073/pnas.1216750110 . 
  28. ^ Galfetti, Thomas; Hochuli, Peter A.; Brayard, Arnaud; Bucher, Hugo; Weissert, Helmut; Vigran, Jorunn Os. Smithian-Spathian boundary event: Evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology. 2007, 35 (4): 291. Bibcode:2007Geo....35..291G. doi:10.1130/G23117A.1. 
  29. ^ Goudemand, Nicolas; Romano, Carlo; Leu, Marc; Bucher, Hugo; Trotter, Julie A.; Williams, Ian S. Dynamic interplay between climate and marine biodiversity upheavals during the early Triassic Smithian -Spathian biotic crisis. Earth-Science Reviews. August 2019, 195. Bibcode:2019ESRv..195..169G. doi:10.1016/j.earscirev.2019.01.013 . 
  30. ^ 30.0 30.1 Widmann, Philipp; Bucher, Hugo; Leu, Marc; Vennemann, Torsten; Bagherpour, Borhan; Schneebeli-Hermann, Elke; Goudemand, Nicolas; Schaltegger, Urs. Dynamics of the Largest Carbon Isotope Excursion During the Early Triassic Biotic Recovery. Frontiers in Earth Science. 2020, 8 (196). doi:10.3389/feart.2020.00196 . 
  31. ^ Hallam, A.; Wignall, P. B. Mass Extinctions and Their Aftermath . Oxford University Press, UK. 1997: 143. ISBN 978-0-19-158839-6. Extinctions with and at the close of the Triassic 
  32. ^ Marshall, Michael. Roasting Triassic heat exterminated tropical life. New Scientist. 18 October 2012 [2021-10-24]. (原始內容存檔於2021-10-26). 
  33. ^ Romano, Carlo; Jenks, James F.; Jattiot, Romain; Scheyer, Torsten M.; Bylund, Kevin G.; Bucher, Hugo. Marine Early Triassic Actinopterygii from Elko County (Nevada, USA): implications for the Smithian equatorial vertebrate eclipse. Journal of Paleontology. 19 July 2017, 91 (5). doi:10.1017/jpa.2017.36 . 
  34. ^ Hallam, A.; Wignall, P. B. Mass Extinctions and Their Aftermath . Oxford University Press, UK. 1997: 144. ISBN 978-0-19-158839-6. 
  35. ^ Brayard, Arnaud; Krumenacker, L. J.; Botting, Joseph P.; Jenks, James F.; Bylund, Kevin G.; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A.; Thomazo, Christophe; Escarguel, Gilles. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna. Science Advances. 15 February 2017, 3 (2). Bibcode:2017SciA....3E2159B. PMC 5310825 . PMID 28246643. doi:10.1126/sciadv.1602159 . 
  36. ^ Smith, Christopher P.A.; Laville, Thomas; Fara, Emmauel; Escarguel, Gilles; Olivier, Nicolas; Vennin, Emmanuelle; Goudemand, Nicolas; Bylund, Kevin G.; Jenks, James F.; Stephen, Daniel A.; Hautmann, Michael; Charbonnier, Sylvain; Krumenacker, L. J.; Brayard, Arnaud. Exceptional fossil assemblages confirm the existence of complex Early Triassic ecosystems during the early Spathian. Scientific Reports. 4 October 2021, 11. doi:10.1038/s41598-021-99056-8. 

閱讀更多

編輯
  • Martinetto, Edoardo; Tschopp, Emanuel; Gastaldo, Robert (編). Nature through Time: Virtual field trips through the Nature of the past. Springer International Publishing. 2020. ISBN 978-3-030-35057-4. 

外部連結

編輯

Template:Triassic Footer