動力學中的普法夫約束(Pfaffian constraint)是一種用以下形式描述系統的方式:

[1]

其中是系統限制方程的個數。

非完整系統一定可以表示為普法夫約束的形式。

推導

編輯

假設一個用以下非完整約束英語Holonomic constraints方程組描述的非完整系統

 

其中 n個描述系統的廣義座標,而 是系統約束方程的數量,可以將每一個方程用連鎖律微分:

 

經過置換後可以得到下式:

 

例子

編輯

單擺

編輯
 
單擺

考慮單擺,其重物的運動會受到擺長的約束,其重物的速度向量 隨時都會和位置向量 垂直。因為二個向量永遠正交,因此其點積恆為零。重物的位置和速度可以用以下 - 座標系統中的系統來定義:

 

簡化點積後可得:

 

將等號兩邊同乘 ,結果就是約束方程的普法夫約束形式:

 

普法夫形式很好用,若非完整約束方程存在,可以將普法夫形式積分來求解系統的非完整約束方程。此例中的積分是很明顯的:

 

其中C是積分常數。

也可以寫成

 

 寫成平方項只因為其必定是正數。在實際系統中,座標一定都是實數。而 就是單擺的擺長。

機器人

編輯

機器人運動規劃中的普法夫約束(Pfaffian constraint),是由k個線性無關約束的集合,而這些約束都對速度線性,也就是說

 

輪式機器人(wheeled robot)中滾動不滑動的條件即為普法夫約束[2]

相關條目

編輯
  1. ^ Ardema, Mark D. Analytical Dynamics: Theory and Applications. Kluwer Academic / Plenum Publishers. 2005: 57. ISBN 0-306-48681-4. 
  2. ^ Choset, H.M. Principles of Robot Motion: Theory, Algorithms, and Implementation. The MIT Press. 2005. ISBN 0-262-03327-5.