完美集合
在拓樸學中,一個拓樸空間的子集是完美的若且唯若他是閉集且沒有孤立點。等價地說,一個集合是完美的若且唯若,其中是所有的極限點的集合(又稱為的導集)。
在完美集中,每個點都可以被該集合中其他的點隨意逼近。也就是說,給定中的任意一點和該點的一個鄰域,總會存在另一個中的點,也落在該鄰域內。
例子
編輯與其他拓樸性質的關連
編輯康托爾證明了實數的閉子集可以被唯一的分解為一個完美集和一個可數集的不交並。Cantor-Bendixson定理則將該性質推廣至波蘭空間的閉子集。
參見
編輯參考文獻
編輯- Kechris, A. S., Classical Descriptive Set Theory, Berlin, New York: Springer-Verlag, 1995, ISBN 3540943749
- Levy, A., Basic Set Theory, Berlin, New York: Springer-Verlag, 1979
- edited by Elliott Pearl., Pearl, Elliott , 編, Open problems in topology. II, Elsevier, 2007, ISBN 978-0-444-52208-5, MR 2367385