向量場中的李括號,於微分拓樸的數學領域下,稱為Jacobi–李括號向量場的交換子,是在一微分流形M中作用在任意兩個向量場XY算子,此一算子作用後也會形成向量場,以[X, Y]標示。

李括號 [X, Y] 在概念上是沿着由X生成向量流英語Vector flowY微導,常寫為 ("沿着 X 的Y 李微導")。這可以推廣到沿着由X生成的流上任意張量場李導數

李括號是個R-雙線性算子,且將所有在流形M光滑向量體轉成(無限維)李代數

李括號在微分幾何微分拓樸中相當重要,例如在作為非線性控制幾何理論基礎的弗羅貝尼烏斯定理中就可看到李括號[1]

定義

編輯

李括號有下列三種定義,這三種定義不同,但是等價:

作為微導的向量場

編輯

在一流形M上的所有平滑向量場X 可以視為作用在C(M)的平滑函數 微分算子。的確,每個向量場 X 可成為在C(M) 上的微分算子導子),因此可定義 X(f) 的函數,計算函數在方向X(p)上點pf方向導數,更進一步,於C(M)的任意微導都是源於唯一的平滑向量場X

一般來說,任意兩微導   交換子   亦是微導,當中   為算子之組合。 能用於定義關乎微導交換子向量場的李括號:

 .

流與極限

編輯

  為關乎向量場 X 及 D 表示切線圖導數算子(tangent map derivative operator),那麼在點xMXY 的李括號可以定義為 李導數

 

這也測量了連續方向的failure of the flow   至點 x:

 

以坐標表示

編輯

雖上述李括號的定義為內在的(和流形M上的座標選擇無關),但在實務上常常會想計算特定坐標系 下的李氏括號。可以令 ,為切線束的相關局部基底,使得對平滑函數 而言,一般向量場能寫成   。因此李括號可由以下方式計算:

 

MRn的某開子集,那麼向量場XY 可以寫成由平滑函數  形式,且李括號  的表示式如下:  

此處之   n×n 雅可比矩陣 乘上 1 欄向量 XY

性質

編輯

向量場的李括號等同於所有在M(也就是切線束的平滑截  ) 上實向量空間 中的李代數的結構,表 [ • , • ] 為具以下性質之  的映射:

  • R-雙線性形式
  • 反對稱性,  
  • 雅可比恆等式 

第二性質可馬上推得對任意  ,會使具 成立。

更進一步說,李括號具有「乘積法則」 。 給定一平滑 (純量值) 函數 f 與在M上的向量場,由每點xM的純量乘向量Yx後可以得到一個新的向量場fY ,如此:

  •  

此處用向量場Y乘上純量函數 X(f) ,及向量場[X, Y]與純量函數 f 如此引導出一具李括號的向量場至李代數

XY的李括號為零,表示在這些方向可以定義以XY作為座標向量場而內嵌入於M之曲面:

定理:   若且為若XY的流局部交換,此指對所有xM且足夠小的s, t 

而這為弗羅貝尼烏斯定理的特例。

應用

編輯

在證明控制仿射無漂系統(driftless affine control system)的小時間局部可控制性(small-time local controllability、STLC)時,李氏括號是其中重要的一部份。

總結

編輯

如上所述,李導數可被視為廣義的李括號。其他可視為是(向量值微分形式)廣義李括號的有弗勒利歇爾-奈恩黑斯括號(Frölicher–Nijenhuis bracket)

相關條目

編輯

參考

編輯
  1. ^ Isaiah 2009,第20–21頁, nonholonomic systems; Khalil 2002,第523–530頁, feedback linearization.

其他閱讀

編輯