計算符號學(英語:computational semiotics)是一個跨學科領域,其研究、應用和借鑑領域涵蓋了邏輯數學計算理論實踐形式自然語言研究、一般認知科學,以及符號學本身。該術語既涵蓋了符號學在電腦硬件和軟件設計中的應用,也包括使用計算來執行符號學分析。前者側重於符號學可以為計算帶來什麼;後者與計算能給符號學帶來什麼有關。

計算符號學

編輯

該領域的一個共同主題是以符號理論視角看待人工智能知識表示的問題。其許多應用場景是人機互動和基本辨識裝置。

代數符號學是該領域的一部分,它結合了代數規範和社會符號學的各個方面,已應用於用戶介面設計和數學證明的呈現。

符號學的計算方法

編輯

欲進行符號學的計算,需要將符號學分析方法形式化,並以電腦演算法來實現,以之來處理大型數據集。這些數據集通常是文字,但符號學也為分析其他類型的數據開闢了道路。現有研究已提供自動化的對立分析和語意方陣生成[1]、隱喻辨識[2]和圖像分析[3]的方法。 Shackell[4]提議,應該開闢自然符號處理的一個新領域,將自然語言處理擴充到具有重要的文化意義的或語言學之外的領域,例如應用於說服技術行銷品牌分析等。另一方面,Meunier認為符號學和計算是相容的,二者結合可以在理解意義的形式上提供更好的邏輯一致性。[5]

參見

編輯

參考文獻

編輯
  1. ^ Shackell, Cameron; Sitbon, Laurianne. Computational opposition analysis using word embeddings: A method for strategising resonant informal argument. Argument & Computation. 2020-01-29, 10 (3): 301–317. doi:10.3233/AAC-190467 . 
  2. ^ Neuman, Yair; Danesi, Marcel; Cohen, Yochai; Assaf, Dan. Opposition theory and computational semiotics. Σημειωτκή - Sign Systems Studies. 2015, 43 (2–3): 159–172 [2023-05-30]. ISSN 1406-4243. doi:10.12697/SSS.2015.43.2-3.01 . (原始內容存檔於2023-06-04) (英語). 
  3. ^ Chartier, Jean-François; Pulizzotto, Davide; Chartrand, Louis; Meunier, Jean-Guy. A data-driven computational semiotics: The semantic vector space of Magritte's artworks. Semiotica. 2019-10-25, 2019 (230): 19–69. ISSN 0037-1998. S2CID 203304655. doi:10.1515/sem-2018-0120. 
  4. ^ Shackell, C. Finite semiotics: Cognitive sets, semiotic vectors, and semiosic oscillation. Semiotica. 26 July 2019, 2019 (229): 211–235 [2023-05-30]. S2CID 67111370. doi:10.1515/sem-2017-0127. (原始內容存檔於2023-03-26). 
  5. ^ Meunier, Jean Guy. Computational Semiotics. Bloomsbury Academic. 2021. ISBN 9781350166622 (English). 

延伸閱讀

編輯
  • Meunier, J.G. (2021). Computational Semiotics, Bloomsburry Academic.
  • Andersen, P.B. (1991). A Theory of Computer Semiotics, Cambridge University Press頁面存檔備份,存於互聯網檔案館).
  • de Souza, C.S., The Semiotic Engineering of Human-Computer Interaction, MIT Press, Cambridge, MA, 2005.
  • Tanaka-Ishii, K. (2010), "Semiotics of Programming", Cambridge University Press頁面存檔備份,存於互聯網檔案館).
  • Hugo, J. (2005), "The Semiotics of Control Room Situation Awareness", Fourth International Cyberspace Conference on Ergonomics, Virtual Conference, 15 Sep – 15 Oct 2005. Eprint頁面存檔備份,存於互聯網檔案館
  • Gudwin, R.; Queiroz J. (eds) - Semiotics and Intelligent Systems Development - Idea Group Publishing, Hershey PA, USA (2006), ISBN 1-59904-063-8 (hardcover), 1-59904-064-6 (softcover), 1-59904-065-4 (e-book), 352 ps. Link to publisher頁面存檔備份,存於互聯網檔案館
  • Gudwin, R.; Queiroz, J. - Towards an Introduction to Computational Semiotics - Proceedings of the 2005 IEEE International Conference on Integration of Knowledge Intensive Multi-Agent Systems - KIMAS'05, 18–21 April 2005, Waltham, MA, USA, pp. 393–398.IEEExplore
  • Mili, A., Desharnais, J., Mili, F., with Frappier, M., Computer Program Construction, Oxford University Press, New York, NY, 1994. — Introduction to Tarskian relation theory and its applications within the relational programming paradigm.
  • Rieger, Burghard B.: Computing Granular Word Meanings. A fuzzy linguistic approach to Computational Semiotics, in: Wang, Paul P. (ed.): Computing with Words. [Wiley Series on Intelligent Systems 3], New York (John Wiley & Sons) 2001, pp. 147–208.
  • Rieger, Burghard B.: Computing Fuzzy Semantic Granules from Natural Language Texts. A computational semiotics approach to understanding word meanings, in: Hamza, M.H. (ed.): Artificial Intelligence and Soft Computing, Proceedings of the IASTED International Conference, Anaheim/ Calgary/ Zürich (IASTED/ Acta Press) 1999, pp. 475–479.
  • Rieger, Burghard B.: A Systems Theoretical View on Computational Semiotics. Modeling text understanding as meaning constitution by SCIPS, in: Proceedings of the Joint IEEE Conference on the Science and Technology of Intelligent Systems (ISIC/CIRA/ISAS-98), Piscataway, NJ (IEEE/Omnipress) 1998, pp. 840–845. IEEExplore頁面存檔備份,存於互聯網檔案館
  • Shackell, C.; Sitbon, Laurianne. Computational opposition analysis using word embeddings: A method for strategising resonant informal argument. Argument & Computation. 2019, 10 (3): 301–317. doi:10.3233/AAC-190467 . 

外部連結

編輯