錢珀瑙恩數

一个实数的超越数

錢珀瑙恩數Champernowne constantC10是一個實數超越數,其十進制表示法有重要的特性,得名自數學家D. G.錢珀瑙恩英語D. G. Champernowne,在1933年以本科生(劍橋大學)的身份發表有關錢珀瑙恩數的論文。

十進制下,可以用連續整數來定義錢珀瑙恩數:

OEIS數列A033307).

也可以定義其他進制系統下的錢珀瑙恩數:

錢珀瑙恩字Champernowne word)或是巴比爾字Barbier word)是指由Ck各位數形成的數列[1][2]

十進制下的錢珀瑙恩數C10正規數,是每個數字出現機會均等的實數。

性質

編輯

實數x若在某一進制b下,其數字都是均勻分佈,此實數在底數b下為正規數]。均勻分佈的意思是所有數字出現比率相近,所有二位數字組合出現比率相近,所有三位數字組合出現比率相近等。若實數在所有進制都是正規數,則稱為絕對正規數。

若將一數字的各位數組成一字串,為[a0, a1, ...],而此數字在10進制下正規數,因此可以預期,此字串中,字串[0], [1], [2], …, [9]出現的概率都是1/10,而字串[0,0], [0,1], ..., [9,8], [9,9]出現的概率都是1/100。

錢珀瑙恩證明了 在十進制下為正規數[3],Nakai和Shiokawa證明了更通用的定理:也就是 在b進制下都會正規數[4]。有關在 的條件下, 在b進制是否是正規數,這問題是還沒有答案的開放問題。例如,目前還不知道 在9進制下是否是正規數。例如 的前54位數是0.123456789101112131415161718192021222324252627282930313,在9進制下表示為 

Kurt Mahler英語Kurt Mahler證明錢珀瑙恩數是超越數[5] 無理性度量英語irrationality measure(表示用有理數近似此數字的困難程度)為 ,而針對 的進制  [6]

相關條目

編輯

參考資料

編輯
  1. ^ Cassaigne & Nicolas (2010) p.165
  2. ^ *Allouche, Jean-Paul; Shallit, Jeffrey. Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press. 2003: 299. ISBN 978-0-521-82332-6. Zbl 1086.11015. 
  3. ^ Champernowne 1933
  4. ^ Nakai & Shiokawa 1992
  5. ^ K. Mahler, Arithmetische Eigenschaften einer Klasse von Dezimalbrüchen, Proc. Konin. Neder. Akad. Wet. Ser. A. 40 (1937), p. 421–428.
  6. ^ Masaaki Amou, Approximation to certain transcendental decimal fractions by algebraic numbers, Journal of Number Theory英語Journal of Number Theory, Volume 37, Issue 2, February 1991, Pages 231–241

文獻

編輯
  • Cassaigne, J.; Nicolas, F. Factor complexity. Berthé, Valérie; Rigo, Michel (編). Combinatorics, automata, and number theory. Encyclopedia of Mathematics and its Applications 135. Cambridge: Cambridge University Press. 2010: 163–247. ISBN 978-0-521-51597-9. Zbl 1216.68204. 
  • Champernowne, D. G., The construction of decimals normal in the scale of ten, Journal of the London Mathematical Society, 1933, 8 (4): 254–260, doi:10.1112/jlms/s1-8.4.254 .
  • Nakai, Y.; Shiokawa, I., Discrepancy estimates for a class of normal numbers, Acta Arithmetica, 1992, 62 (3): 271–284, doi:10.4064/aa-62-3-271-284  

外部連結

編輯