十二邊形數是能排成十二邊形多邊形數。其概念類似三角形數平方數,不過十二邊形數和三角形數平方數不同,所對應的形狀沒有旋轉群對稱性英語Rotational symmetry的特性。

十二邊形數是一種有形數,其代表十二邊形。第n十二邊形數的公式為:5n2 - 4n,且 n > 0。前45個十二邊形數為:

1, 12, 33, 64, 105, 156, 217, 288, 369, 460, 561, 672, 793, 924, 1065, 1216, 1377, 1548, 1729, 1920, 2121, 2332, 2553, 2784, 3025, 3276, 3537, 3808, 4089, 4380, 4681, 4992, 5313, 5644, 5985, 6336, 6697, 7068, 7449, 7840, 8241, 8652, 9073, 9504, 9945 ... (OEIS數列A051624

計算第n個十二邊形數,也可以先將n平方加上四倍的「第(n - 1)個普洛尼克數」,寫成代數公式則變為:

十二邊形數有不斷的奇偶交替的性質,在十進制中,十二邊形數的末位數以1,2,3,4,5,6,7,8,9,0的規律循環出現。儘管十進制中十二邊形數的末位數可以是任何數字。

根據費馬多邊形數定理,所有的整數都可以表示成至多12個十二邊形數的和。

參見

編輯