多邊形圖案地面

多邊形圖案地面(Polygonal patterned ground)在火星某些地區很常見[1][2][3][4][5][6] [7],普遍認為是由地表冰升華所導致,升華是固體冰直接轉變為氣體的過程,與地球上乾冰發生的情況相似。火星上呈現多邊形地面的地方可能表明未來的定居者可以在尋里找到水冰。中心下凹的多邊形地表已被提議為地面冰的標記[8]

圖案地面形成於在氣候變化時,從天空落下的一層覆蓋物層,被稱作緯度相關覆蓋層[9][10][11][12]

在火星上,研究人員發現了由斷裂和巨石排列形成的圖案地面。目前尚不清楚是什麼導致巨石形成了圖案,但似乎斷裂並沒有導致巨石四處移動[13]

南海區多邊形地

編輯

希臘區多邊形地

編輯

多邊形地表的大小和形成

編輯

斷裂多邊形地面一般分為中心拱起型和中心下凹型兩種,中心拱起型多邊形長寬約為10米寬,界槽寬2-3米;中心下凹型多邊形長寬5-10米,界脊寬3-4米。[14][15][16]

拱起型多邊形的中心高邊界低,它形成於表面裂縫周圍升華的增強,裂縫在富冰地表區很常見[17][18] [19][20][21][5][22]

裂縫會擴大表面升華區域,經過一段時間後,狹窄的裂縫逐慚變寬,變成凹槽。

中心下凹型多邊形被認為是從中心拱起型多邊形演化而來,環中心拱起型多邊形邊緣的凹槽可能被沉積物填塞。這種厚厚的沉積物會阻礙升華,因此在粗化沉積層覆蓋較薄的中心區則會發生更多的升華。隨着時間的推移,中間部分會慢慢低於外側區,凹槽中的沉積物將反變成突脊[14]

挪亞區中心拱起型多邊形

編輯

伊斯墨諾斯湖區中心拱起多邊形

編輯

碎屑狀多形地

編輯

許多圖案地面區都是由巨石形成,對此,目前尚不知曉其中的原因,巨石通常排列成包括多邊形在內各種形狀。一項有關羅蒙諾索夫撞擊坑的研究發現,它們並非由裂隙網所造成[13],在北部平原已發現了碎屑圖案地面[23][24][25][26],另一地點是埃律西昂平原[27],研究人員還在阿耳古瑞盆地(阿耳古瑞區)發現了這種地形[28][29]

緯度相關覆蓋層

編輯

火星大部分表面都有一層富含水冰的厚厚覆蓋層,它們是由過去多次從天空飄落的冰芯塵埃所構成,該覆蓋層被稱為「緯度相關覆蓋層」,因為它的形成與所處緯度有關。正是這層覆蓋層的破裂,後來才形成了多邊形地面。

在所有水冰消失之前,覆蓋層會持續很長的一段時間,因為在其頂部會形成一層保護性的滯留沉積物[30]。覆蓋層中含有冰和塵埃,在一定量的冰升華消失後,塵埃停留在頂部,形成滯留沉積物[31][32][33]

當火星氣候與現在的氣候不同時,就形成了覆蓋層。行星自轉軸的傾斜度或傾角變化很大[34][35][36]。地球的傾斜變化很小,因為較大的月球穩定了地球,而火星只有兩顆非常小的衛星,它們沒有足夠的引力來穩住火星。當火星傾斜度超過40度左右(今天為25度)時,冰就會沉積在今天存在大量覆蓋層的一些地帶上[37][38]

其他地表特徵

編輯

另一種類型的表面被稱為「腦紋地形」,因為它看起來像人腦的表面。當兩種區域同時都可見時,腦紋地形一般位於多邊形地面之下[14]

儘管底層的腦紋地形參差不齊,但從頂部開始,多邊形地層相當平整,據信,含有多邊形的覆蓋層厚度為10-20米[39]

「籃球地形」是火星表面的另一種表現形式,從遠處看就像一隻籃球表面,特寫照片揭示它由成堆的岩石組成[40][41][42][43]。人們曾提出過許多想法來解釋這些岩石堆是如何形成的[44][45]

在北緯40度和南緯40度附近的許多陡坡上都有沖溝,有些沖溝呈多邊形,它們被稱作「格利岡斯」(gullygons)-溝壑[39]

複雜多邊形圖案地面

編輯

在地球上

編輯

在地球上,多邊形、圖案地面存在於富含冰的地面上,特別是在極地地區。

另請查閱

編輯

參考文獻

編輯
  1. ^ http://www.diss.fu-berlin.de/diss/servlets/MCRFileNodeSe[永久失效連結] rvlet/FUDISS_derivate_000000003198/16_ColdClimateLandforms-13-utopia.pdf?hosts=
  2. ^ Kostama, V.-P.; Kreslavsky, Head. Recent high-latitude icy mantle in the northern plains of Mars: Characteristics and ages of emplacement. Geophys. Res. Lett. 2006, 33 (11): L11201. Bibcode:2006GeoRL..3311201K. CiteSeerX 10.1.1.553.1127 . doi:10.1029/2006GL025946. 
  3. ^ Malin, M.; Edgett, K. Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission. J. Geophys. Res. 2001, 106 (E10): 23429–23540. Bibcode:2001JGR...10623429M. doi:10.1029/2000je001455 . 
  4. ^ Milliken, R.; et al. Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images. J. Geophys. Res. 2003, 108 (E6): E6. Bibcode:2003JGRE..108.5057M. CiteSeerX 10.1.1.506.7847 . doi:10.1029/2002JE002005. 
  5. ^ 5.0 5.1 Mangold, N. High latitude patterned grounds on Mars: Classification, distribution and climatic control. Icarus. 2005, 174 (2): 336–359. Bibcode:2005Icar..174..336M. doi:10.1016/j.icarus.2004.07.030. 
  6. ^ Kreslavsky, M.; Head, J. Kilometer-scale roughness on Mars: Results from MOLA data analysis. J. Geophys. Res. 2000, 105 (E11): 26695–26712. Bibcode:2000JGR...10526695K. doi:10.1029/2000je001259. 
  7. ^ Seibert, N.; Kargel, J. Small-scale martian polygonal terrain: Implications for liquid surface water. Geophys. Res. Lett. 2001, 28 (5): 899–902. Bibcode:2001GeoRL..28..899S. doi:10.1029/2000gl012093 . 
  8. ^ Soare, R., et al. 2018. POSSIBLE ICE-WEDGE POLYGONISATION IN UTOPIA PLANITIA, MARS, AND ITS POLEWARD LATITUDINAL-GRADIENT. 49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083). 1084.pdf
  9. ^ Hecht, M. Metastability of water on Mars. Icarus. 2002, 156 (2): 373–386. Bibcode:2002Icar..156..373H. doi:10.1006/icar.2001.6794. 
  10. ^ Mustard, J.; et al. Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature. 2001, 412 (6845): 411–414. Bibcode:2001Natur.412..411M. PMID 11473309. doi:10.1038/35086515. 
  11. ^ Kreslavsky, M.A., Head, J.W., 2002. High-latitude Recent Surface Mantle on Mars: New Results from MOLA and MOC. European Geophysical Society XXVII, Nice.
  12. ^ Head, J.W.; Mustard, J.F.; Kreslavsky, M.A.; Milliken, R.E.; Marchant, D.R. Recent ice ages on Mars. Nature. 2003, 426 (6968): 797–802. Bibcode:2003Natur.426..797H. PMID 14685228. doi:10.1038/nature02114. 
  13. ^ 13.0 13.1 Barrett, A.; et al. Clastic patterned ground in Lomonosov crater, Mars: examining fracture controlled formation mechanisms. Icarus. 2017, 295: 125–139. Bibcode:2017Icar..295..125B. doi:10.1016/j.icarus.2017.06.008 . 
  14. ^ 14.0 14.1 14.2 Levy, J.; Head, J.; Marchant, D. Concentric crater fill in Utopia Planitia: History and interaction between glacial "brain terrain" and periglacial mantle processes. Icarus. 2009, 202 (2): 462–476. Bibcode:2009Icar..202..462L. doi:10.1016/j.icarus.2009.02.018. 
  15. ^ HiRISE | Hexagons in Icy Terrain (PSP_008883_2245). [2021-08-10]. (原始內容存檔於2021-08-10). 
  16. ^ 存档副本. [2021-08-10]. (原始內容存檔於2021-08-31). 
  17. ^ Mutch, T.A.; et al. The surface of Mars: The view from the Viking2 lander. Science. 1976, 194 (4271): 1277–1283. Bibcode:1976Sci...194.1277M. PMID 17797083. doi:10.1126/science.194.4271.1277. 
  18. ^ Mutch, T.; et al. The geology of the Viking Lander 2 site. J. Geophys. Res. 1977, 82 (B28): 4452–4467. Bibcode:1977JGR....82.4452M. doi:10.1029/js082i028p04452. 
  19. ^ Levy, J.; et al. Thermal contraction crack polygons on Mars: Classification, distribution, and climate implications from HiRISE observations. J. Geophys. Res. 2009, 114 (E1): E01007. Bibcode:2009JGRE..114.1007L. doi:10.1029/2008JE003273. 
  20. ^ Washburn, A. 1973. Periglacial Processes and Environments. St. Martin’s Press, New York, pp. 1–2, 100–147.
  21. ^ Mellon, M. Small-scale polygonal features on Mars: Seasonal thermal contraction cracks in permafrost. J. Geophys. Res. 1997, 102 (E11): 25617–625. Bibcode:1997JGR...10225617M. doi:10.1029/97je02582 . 
  22. ^ Marchant, D.; Head, J. Antarctic dry valleys: Microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus (Submitted manuscript). 2007, 192 (1): 187–222. Bibcode:2007Icar..192..187M. doi:10.1016/j.icarus.2007.06.018. 
  23. ^ Balme, M.; et al. Morphological evidence for geologically young thaw of ice on Mars: a review of recent studies using high-resolution imaging data (PDF). Prog. Phys. Geogr. (Submitted manuscript). 2013, 37 (3): 289–324 [2021-08-10]. doi:10.1177/0309133313477123. (原始內容存檔 (PDF)於2021-08-31). 
  24. ^ Gallangher, M.; et al. Sorted clastic stripes, lobes and associated gullies in high-latitude craters on Mars: landforms indicative of very recent, polycyclic ground-ice thaw and liquid flows. Icarus. 2011, 211 (1): 458–471. Bibcode:2011Icar..211..458G. doi:10.1016/j.icarus.2010.09.010. 
  25. ^ Johnsson, D.; et al. Periglacial mass-wasting landforms on Mars suggestive of transient liquid water in the recent past : insights from solifluction lobes on Svalbard (PDF). Icarus. 2012, 218 (1): 489–505 [2021-08-10]. Bibcode:2012Icar..218..489J. doi:10.1016/j.icarus.2011.12.021. (原始內容存檔 (PDF)於2021-08-31). 
  26. ^ Orloff, M.; et al. Boulder movement at high northern latitudes of Mars. J. Geophys. Res. 2011, 116 (E11): 1–12. Bibcode:2011JGRE..11611006O. doi:10.1029/2011je003811. 
  27. ^ Balme, M.; et al. Sorted stone circles in Elysium Planitia, Mars: Implications for recent Martian climate. Icarus. 2009, 200 (1): 30–38. Bibcode:2009Icar..200...30B. doi:10.1016/j.icarus.2008.11.010. 
  28. ^ Banks, M.; et al. High resolution imaging science experiment (HiRISE) observations of glacial and periglacial morphologies in the circum-Argyre Planitia highlands. Mars. J. Geophys. Res. 2008, 113 (E12): E12015. Bibcode:2008JGRE..11312015B. doi:10.1029/2007je002994 . 
  29. ^ Soare, R.; et al. Sorted (clastic) polygons in the Argyre region, Mars, and possible evidence of pre-and post- glacial periglaciation in the Late Amazonian Epoch. Icarus. 2016, 264: 184–197. Bibcode:2016Icar..264..184S. doi:10.1016/j.icarus.2015.09.019. 
  30. ^ Marchant, D.; et al. Formation of patterned ground and sublimation till over Miocene glacier ice in Beacon valley, southern Victoria land. Antarctica. Geol. Soc. Am. Bull. 2002, 114 (6): 718–730. Bibcode:2002GSAB..114..718M. doi:10.1130/0016-7606(2002)114<0718:fopgas>2.0.co;2. 
  31. ^ Schorghofer, N.; Aharonson, O. Stability and exchange of subsurface ice on Mars (PDF). J. Geophys. Res. 2005, 110 (E5): E05 [2021-08-10]. Bibcode:2005JGRE..110.5003S. doi:10.1029/2004JE002350 . (原始內容存檔 (PDF)於2021-08-31). 
  32. ^ Schorghofer, N. Dynamics of ice ages on Mars. Nature. 2007, 449 (7159): 192–194. Bibcode:2007Natur.449..192S. PMID 17851518. doi:10.1038/nature06082. 
  33. ^ Head, J.; Mustard, J.; Kreslavsky, M.; Milliken, R.; Marchant, D. Recent ice ages on Mars. Nature. 2003, 426 (6968): 797–802. Bibcode:2003Natur.426..797H. PMID 14685228. doi:10.1038/nature02114. 
  34. ^ name; Touma, J.; Wisdom, J. The Chaotic Obliquity of Mars. Science. 1993, 259 (5099): 1294–1297. Bibcode:1993Sci...259.1294T. PMID 17732249. doi:10.1126/science.259.5099.1294. 
  35. ^ Laskar, J.; Correia, A.; Gastineau, M.; Joutel, F.; Levrard, B.; Robutel, P. Long term evolution and chaotic diffusion of the insolation quantities of Mars (PDF). Icarus (Submitted manuscript). 2004, 170 (2): 343–364 [2021-08-10]. Bibcode:2004Icar..170..343L. doi:10.1016/j.icarus.2004.04.005. (原始內容存檔 (PDF)於2021-08-12). 
  36. ^ Levy, J.; Head, J.; Marchant, D.; Kowalewski, D. Identification of sublimation-type thermal contraction crack polygons at the proposed NASA Phoenix landing site: Implications for substrate properties and climate-driven morphological evolution. Geophys. Res. Lett. 2008, 35 (4): L04202. Bibcode:2008GeoRL..35.4202L. doi:10.1029/2007GL032813 . 
  37. ^ Kreslavsky, M.J.; Head, J. Mars: Nature and evolution of young, latitude-dependent water-ice-rich mantle. Geophys. Res. Lett. 2002, 29 (15): 14–1–14–4. Bibcode:2002GeoRL..29.1719K. doi:10.1029/2002GL015392 . 
  38. ^ Kreslavsky, M.; Head, J. Modification of impact craters in the northern plains of Mars: Implications for the Amazonian climate history. Meteorit. Planet. Sci. 2006, 41 (10): 1633–1646. Bibcode:2006M&PS...41.1633K. doi:10.1111/j.1945-5100.2006.tb00441.x . 
  39. ^ 39.0 39.1 Levy, J.; et al. Thermal contraction crack polygons on Mars: A synthesis from HiRISE, Phoenix, and terrestrial analog studies. Icarus. 2010, 206 (1): 229–252. Bibcode:2010Icar..206..229L. doi:10.1016/j.icarus.2009.09.005. 
  40. ^ Malin, M; Edgett, K. Mars global surveyor Mars orbiter camera: interplanetary cruise through primary mission. J. Geophys. Res. 2001, 106 (E10): 23429. Bibcode:2001JGR...10623429M. doi:10.1029/2000je001455 . 
  41. ^ Mellon, M.; et al. Periglacial landforms at the Phoenix landing site and the Northern Plains of Mars. J. Geophys. Res. 2008, 113 (E4): 1–15. Bibcode:2008JGRE..113.0A23M. doi:10.1029/2007je003039 . 
  42. ^ HiRISE | Basketball Terrain (ESP_011816_2300). [2021-08-10]. (原始內容存檔於2021-08-10). 
  43. ^ HiRISE | Basketball Terrain (PSP_007254_2320). [2021-08-10]. (原始內容存檔於2021-07-25). 
  44. ^ Kreslavsky, M. A. Mars: Nature and evolution of young latitude-dependent water-ice-rich mantle. Geophysical Research Letters. 2002, 29 (15): 14–1–14–4. Bibcode:2002GeoRL..29.1719K. doi:10.1029/2002GL015392 . 
  45. ^ Kreslavsky, M. J. Head. Mars: Nature and evolution of young latitude-dependent water-ice-rich mantle. Geophysical Research Letters. 2002, 29 (15): 14–1–14–4. Bibcode:2002GeoRL..29.1719K. doi:10.1029/2002gl015392 .