游離DNA

维基媒体消歧义页

循環遊離DNA(cfDNA) (也稱為游離DNA,有時稱為游離核酸)是釋放到血漿、尿液、腦脊液等體液中的降解DNA片段。cfDNA片段的典型大小反映了染色體顆粒(~165 bp)以及多個核小體,可保護DNA免受凋亡核酸酶的消化。[1]游離核酸存在於細胞外,具有胞間通訊及免疫調節功能,貫穿機體生老病死各個過程,可用於描述在體液中自由循環的各種形式的DNA,包括循環腫瘤DNA(ctDNA) 、無細胞線粒體DNA(ccf mtDNA)、無細胞胎兒DNA(cffDNA)和供體來源的細胞DNA(dd-cfDNA)。[2]癌症中,尤其是在晚期疾病中,觀察到cfDNA水平升高。[3]有證據表明,隨着年齡的增長,cfDNA 的循環變得越來越頻繁。[4]cfDNA已被證明是除癌症和胎兒醫學之外的多種疾病的有用生物標誌物。這包括但不限於創傷、敗血症、無菌性炎症心肌梗塞、中風、移植、糖尿病和鐮狀細胞病[5]cfDNA主要是一種雙鏈細胞外DNA分子,由小片段(50~200 bp[6][7]和較大片段(21 kb)[8]組成,並已被認為是準確的標記物前列腺癌乳腺癌診斷[9]

游離核酸主要包含雙鏈核DNA、線粒體DNA等,產生於各種疾病過程,與疾病進程關聯密切,有望作為臨床生物標誌物以診斷細胞凋亡、組織損傷及炎症過程。在炎症、損傷及癌症組織臨床樣本中,疾病個體游離核酸濃度與健康個體差異顯著,除了濃度,核酸片段所攜帶起源細胞特徵,亦可用於臨床診斷。母體血漿中游離胎兒核酸含有胎兒特異性甲基化水平,可作非侵入性產前診斷工具;腫瘤來源核酸具有腫瘤組織特異性甲基化狀態,可用於癌症篩查及定位;器官移植後游離核酸可反映供體情況。血漿游離核酸與其來源組織亞細胞器結構、染色質結構、基因表達及核酸酶含量密切相關,分析核酸片段長度、序列及拓撲結構等可為炎症、疾病提供更多診療信息。[10]

一些研究證實了cfDNA起源於癌症,並且 cfDNA 出現在晚期癌症患者的循環血漿和其他體液中。[11]

cfDNA釋放到血流中的原因有多種,包括細胞凋亡、壞死和NETosis。在腫瘤發展過程中,它在血液中的積累迅速增加,這是由凋亡細胞和壞死細胞過度釋放DNA引起的。外泌體內的主動分泌已經被討論過,但仍不清楚這是否是 cfDNA 的相關或相對較小的來源。 [12]

cfDNA主要以核小體形式循環,核小體是組蛋白和DNA 的核複合物。[13]cfDNA 也可以在較短的大小範圍內(例如 50bp)觀察到,並且與調控元件相關。[14]它們在癌症中經常非特異性升高,但對於監測細胞毒性癌症治療可能更具有特異性,主要是為了早期評估治療效果[15]

歷史

編輯

游離核酸由 Mandel 和 Metais 於1948年首次發現[16]後來發現患病患者血漿中cfDNA的水平顯着升高。這一發現首先是在系統性紅斑狼瘡患者中發現的 ,[17]後來確定超過一半的癌症患者的cfDNA 水平升高。[18]cfDNA的分子分析得出了一個重要發現,即癌症患者的血漿DNA含有腫瘤相關突變,可用於癌症診斷和隨訪。[19][20]從人體血漿中提取循環腫瘤 DNA (circulating tumor DNA,ctDNA) 的能力使無創癌症檢測取得了巨大進步。[21]最值得注意的是,它導致了現在所謂的液體活檢。簡而言之,液體活檢利用血液中的生物標誌物和癌細胞作為診斷癌症類型和階段的手段。[22]這種類型的活檢是非侵入性的,可以進行常規臨床篩查,這對於確定初始治療後的癌症復發非常重要。[23]

cfDNA 的不同來源

編輯

cfDNA 的細胞內來源,例如來自細胞核線粒體,也可以影響cfDNA的炎症潛力。mtDNA是一種有效的炎症觸發因素[24]mtDNA由於其原核起源,具有許多與細菌DNA相似的特,包括存在相對較高含量的未甲基化CpG基序,這在核DNA中很少觀察到。[25]未甲基化的CpG基序特別重要,因為TLR9(唯一的內溶酶體DNA感應受體)對未甲基化的CpG DNA具有獨特的特異性。 mtDNA被證明可通過TLR9參與激活中性粒細胞[26]除非與載體蛋白偶聯, mtDNA (而非核 DNA)可被視為通過TLR9誘導促炎症的危險相關分子模式。 [27]柯林斯等人。據報道,關節內注射mtDNA可誘發體內關節炎,提出mtDNA擠出在 RA疾病發病機制中的直接作用。[27]

與核 DNA 相比,線粒體DNA的特點是8-OHdG水平升高,這是氧化損傷的標誌。 mtDNA中高含量的氧化損傷歸因於mtDNA與ROS非常接近,並且DNA修復機制相對低效,可導致DNA損傷的積累。 [28]

一般,細胞凋亡受機體嚴格調控,膜破裂前得到及時清除,完成良性反應過程;而凋亡過多或清除受阻下,細胞膜破裂時會釋放游離核酸,激活機體先天免疫系統而誘發炎症反應。細胞壞死(necrosis)肇始於創傷及敗血症等,該過程中細胞腫脹並迅速破裂,釋放大量游離核酸等胞內成分;程序性壞死(pyroptosis)時,炎性細胞為應對病原體感染而釋放游離核酸也都會激活炎症反應,參與炎症過程。[29]

生物體遭受感染或損傷時,中性粒細胞趨移至該部位,釋放中性粒細胞胞外誘捕網(neutrophil extracellular traps,NETs),其纖維網絡中富含DNA和抗菌蛋白,可捕捉並消滅病原體。NETs釋放過程類似程序性死亡(programmed cell death),又不同於一般細胞凋亡或者壞死,遂取醫學術語中代表細胞死亡的詞尾「-osis」,以及「NET」為此過程命名為「釋網凋亡(NETosis)」。NETosis除中性粒細胞外,也發生於肥大細胞、嗜鹼性粒細胞、巨噬細胞等細胞。NETosis過程中,NETs釋放通常持續數小時,並最終導致中性粒細胞溶解,形成數天之後即受去氧核糖核酸酶I(DNase I)或巨噬細胞清除,過程中所釋放游離核酸、蛋白等易引起自身免疫反應甚至疾病。另外,游離核酸通常包裹於細胞外囊泡(extracellular vesicle)中,以逃避酶降解,延長炎症持續時間,而自身免疫疾病患者DNase I活性一般較低,本身核酸降解能力緩慢,更是雪上加霜[30][31]

他們表明,NETosis期間的氧化爆發可以氧化mtDNA ,並且釋放的氧化mtDNA本身或與TFAM複合,可以產生I型IFN的顯着誘導。[24]程序性細胞死亡過程中產生的氧化mtDNA不僅會激活TLR9 ,而且還與NRLP3炎症小體結合,導致促炎細胞因子、 IL-1β和IL-18的產生。[32]MtDNA還可被環GMP -AMP合酶(cGAS)識別,cGAS 是一種胞質dsDNA傳感器,可啟動STING-IRF3依賴性途徑,進而協調I型IFN的產生。[33][34]

方法

編輯

收集與純化

編輯

cfDNA 純化很容易因純化過程中血細胞破裂而受到污染。[35]因此,不同的純化方法可能會導致 cfDNA 提取率顯着不同。[36][37]目前,典型的純化方法包括通過靜脈穿刺收集血液、離心沉澱細胞以及從血漿中提取 cfDNA。從血漿中提 cfDNA 的具體方法取決於所需的方案。[38]

cfDNA 分析

編輯

聚合酶鏈式反應

編輯

一般來說,cfDNA中特定DNA序列的檢測可以通過兩種方式完成;對血液中存在的所有 cfDNA 進行序列特異性檢測(基於PCR)和一般基因組分析(DNA 測序)。[39]含有來自腫瘤細胞的DNA的cfDNA的存在最初是通過對提取的cfDNA中的突變基因進行PCR擴增來表徵的。[19]基於PCR的cfDNA分析通常依賴於qPCR和數字PCR的分析性質。這兩種技術對於檢測有限數量的熱點突變來說都是靈敏且具有成本效益的。因此,基於PCR的檢測方法仍然是cfDNA檢測中非常重要的工具。該方法的局限性在於無法檢測ctDNA中存在的較大結構變異,因此大規模並行下一代測序也用於確定cfDNA中的ctDNA含量。

大規模並行測序

編輯

大規模並行測序(MPS)允許對 cfDNA 進行深度測序。需要這種深度測序來檢測血漿中低濃度的突變體ctDNA。突變cfDNA分析通常使用兩種主要測序技術:PCR擴增子測序[40]和混合捕獲測序。[41]其他形式的遺傳改變可以使用ctDNA進行分析(例如體細胞拷貝數改變或遺傳重排)。這裏,主要使用基於非靶向測序的方法,例如WGS或低覆蓋度WGS。

cfDNA 與疾病

編輯

癌症

編輯

大多數 cfDNA 研究都集中在源自癌症的DNA(ctDNA)。簡而言之,癌細胞的DNA通過細胞死亡、分泌或其他未知機制釋放。[42]循環中腫瘤細胞釋放的cfDNA分數受到腫瘤大小以及腫瘤階段和類型的影響。早期癌症和腦腫瘤是液體活檢最難檢測的疾病之一。[43][44][45]

創傷

編輯

急性鈍性創傷[46]和燒傷患者中已檢測到cfDNA升高。[47]在這兩種情況下,血漿中的cfDNA濃度與損傷的嚴重程度以及患者的結果相關。

敗血症

編輯

研究表明,ICU患者血漿中cfDNA的增加是膿毒症發病的一個指標。[48][49]由於ICU患者膿毒症的嚴重程度,可能需要進行進一步測試以確定cfDNA作為膿毒症風險生物標誌物的功效範圍。[5]

心肌梗塞

編輯

顯示出心肌梗塞症狀的患者的cfDNA水平升高。[50]這種升高與患者兩年內額外心臟問題甚至死亡率的結果相關。[51]

移植物排斥反應

編輯

外源 cfDNA 已被證明存在於實體器官移植患者的血漿中。該cfDNA來自移植器官,稱為dd-cfDNA(供體來源的cfDNA)。 dd-cfDNA值在移植手術後最初會出現峰值(>5%),其值在很大程度上取決於移植的器官,通常會在一周內下降(<0.5%)。[52]如果宿主身體排斥移植器官,則血液(血漿)中的dd-cfDNA濃度將升至比無併發症者高 5 倍以上的水平。dd-cfDNA的這種增加可以在任何其他臨床或生化併發症跡象之前檢測到。[52]除了血漿中的ddcfDNA外,一些研究還關注ddcfDNA通過尿液的排泄。這在腎同種異體移植中特別令人感興趣。當使用靶向下一代測序測量 ddcfDNA 時,使用群體特異性全基因組SNP組合進行檢測。 [53]文庫製備過程中,在NGS之前將條形碼附加到連接的接頭上,可以實現絕對 ddcfDNA 定量,而無需事先進行供體基因分型。如果將 cfDNA 拷貝的絕對數量與來自受者的 ddcfDNA 相對於 cfDNA 的分數結合起來,以確定同種異體移植物是否被排斥,這已被證明可以提供額外的臨床益處。 [53]

治療

編輯

針對炎症過程所導致疼痛、發燒等症,臨床上常使用非甾體類抗炎藥(nonsteroidal anti-inflammatory drugs,NSAID)降低炎症相關疾病發病率和死亡率,然而NSAID會抑制自身免疫過程,其過度使用或可導致免疫抑制及併發症[54]。鑑於NSAID後段攔截信號通路會引起較大副作用,阻斷信號級聯於上游勢在必行,也因此游離核酸清除的治療方法逐漸嶄露頭腳。中山大學陳永明教授團隊利用陽離子納米顆粒(cationic nanoparticles,cNP)清除風濕性關節炎患者體內游離核酸,可緩解關節腫脹、骨骼及軟骨損傷,也在銀屑病(psoriasis)治療中取得進展[55][56]。中國科學院生態環境高分子材料重點實驗室陳學思院士團隊將PEI修飾到沸石咪唑骨架得到陽離子顆粒作為游離核酸清除劑,並在小鼠盲腸結紮穿刺(cecal ligation puncture)模型中見效,但該cNP在胎牛血清(Fetal Bovine Serum,FBS)存在下由於蛋白黏附而降低核酸結合能力,僅能通過增大給藥找補,也因此較多分佈於肝臟中,易受機體識別清除[57]。四川大學華西口腔醫院趙蕾教授等人包被硒元素摻雜羥基磷灰石( selenium-doped hydroxyapatite)納米顆粒以聚酰胺胺(polyamidoamine,PAMAM),通過清除游離核酸改善牙周炎症狀[58]

未來發展方向

編輯
 

cfDNA 提供了一種快速、簡單、非侵入性和重複性的採樣方法。這些生物學特徵和採樣的技術可行性相結合,將cfDNA定位為具有巨大用途的潛在生物標誌物,例如用於自身免疫性風濕病和腫瘤。它還提供了一種潛在的生物標誌物,與侵入性組織活檢相比,它具有自身的優勢,可以作為檢測移植排斥和免疫抑制優化的定量措施。然而,該方法在樣本類型(血漿/血清/滑液/尿液)、樣本採集/處理方法、游離或細胞表面結合 DNA、cfDNA 提取和 cfDNA 定量以及呈現和解釋方面缺乏統一性定量 cfDNA 結果。

cfDNA通過熒光方法定量,例如PicoGreen染色和紫外光譜法,更靈敏的是重複元件或看家基因的定量聚合酶鏈反應( PCR ;SYBR Green或TaqMan),或深度測序方法。循環核小體是染色質中 DNA 組織的主要重複單位,可通過酶聯免疫吸附測定 ( ELISA ) 進行定量。 [59]

數據庫

編輯

NucPosDB:內核小體定位和游離 DNA 核小體的數據庫頁面存檔備份,存於互聯網檔案館

參考

編輯
  1. ^ Shtumpf M, Piroeva KV, Agrawal SP, Jacob DR, Teif VB. NucPosDB: a database of nucleosome positioning in vivo and nucleosomics of cell-free DNA. Chromosoma. June 2022, 131 (1-2): 19–28. PMC 8776978 . PMID 35061087. doi:10.1007/s00412-021-00766-9. 
  2. ^ Dholakia S, De Vlaminck I, Khush KK. Adding Insult on Injury: Immunogenic Role for Donor-derived Cell-free DNA?. Transplantation. November 2020, 104 (11): 2266–71. PMC 7590963 . PMID 32217943. doi:10.1097/TP.0000000000003240. 
  3. ^ Shaw JA, Stebbing J. Circulating free DNA in the management of breast cancer. Annals of Translational Medicine. January 2014, 2 (1): 3. PMC 4200656 . PMID 25332979. doi:10.3978/j.issn.2305-5839.2013.06.06. 
  4. ^ Gravina S, Sedivy JM, Vijg J. The dark side of circulating nucleic acids. Aging Cell. June 2016, 15 (3): 398–9. PMC 4854914 . PMID 26910468. doi:10.1111/acel.12454. 
  5. ^ 5.0 5.1 Butt AN, Swaminathan R. Overview of circulating nucleic acids in plasma/serum. Annals of the New York Academy of Sciences. August 2008, 1137 (1): 236–42. Bibcode:2008NYASA1137..236B. PMID 18837954. S2CID 34380267. doi:10.1196/annals.1448.002. 
  6. ^ Mouliere F, Robert B, Arnau Peyrotte E, Del Rio M, Ychou M, et al. High Fragmentation Characterizes Tumour-Derived Circulating DNA. PLOS ONE. 2011, 6 (9): e23418. Bibcode:2011PLoSO...623418M. PMC 3167805 . PMID 21909401. doi:10.1371/journal.pone.0023418 . 
  7. ^ Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. November 2018, 10 (466). PMC 6483061 . PMID 30404863. doi:10.1126/scitranslmed.aat4921. 
  8. ^ Gall TM, Belete S, Khanderia E, Frampton AE, Jiao LR. Circulating Tumor Cells and Cell-Free DNA in Pancreatic Ductal Adenocarcinoma. The American Journal of Pathology. January 2019, 189 (1): 71–81. PMID 30558725. doi:10.1016/j.ajpath.2018.03.020 . 
  9. ^ Casadio V, Calistri D, Salvi S, Gunelli R, Carretta E, Amadori D, Silvestrini R, Zoli W. Urine cell-free DNA integrity as a marker for early prostate cancer diagnosis: a pilot study. Biomed Res Int. 2013, 2013: 270457. PMC 3586456 . PMID 23509700. doi:10.1155/2013/270457 . 
  10. ^ Nagy, Balint. Cell-Free Nucleic Acids. International Journal of Molecular Sciences. 2019-11-12, 20 (22) [2023-07-03]. ISSN 1422-0067. doi:10.3390/ijms20225645. (原始內容存檔於2023-07-03) (英語). 
  11. ^ Teo YV, Capri M, Morsiani C, Pizza G, Faria AM, Franceschi C, Neretti N. Cell-free DNA as a biomarker of aging. Aging Cell. February 2019, 18 (1): e12890. PMC 6351822 . PMID 30575273. doi:10.1111/acel.12890. 
  12. ^ Thakur ZH, Becker A, Matei I, Huang Y, Costa-Silva B. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Research. 2014, 24 (6): 766–9. PMC 4042169 . PMID 24710597. doi:10.1038/cr.2014.44. 
  13. ^ Roth C, Pantel K, Müller V, Rack B, Kasimir-Bauer S, Janni W, Schwarzenbach H. Apoptosis-related deregulation of proteolytic activities and high serum levels of circulating nucleosomes and DNA in blood correlate with breast cancer progression. BMC Cancer. January 2011, 11 (1): 4. PMC 3024991 . PMID 21211028. doi:10.1186/1471-2407-11-4. 
  14. ^ Hudecova I, Smith CG, Hänsel-Hertsch R, Chilamakuri C, Morris JA, Vijayaraghavan A, Heider K, Chandrananda D, Cooper WN, Gale D, Garcia-Corbacho J, Pacey S, Baird R, Rosenfeld N, Mouliere F. Characteristics, origin, and potential for cancer diagnostics of ultrashort plasma cell-free DNA. Genome Research. 2021. PMID 34930798. doi:10.1101/gr.275691.121 . 
  15. ^ Stoetzer OJ, Fersching DM, Salat C, Steinkohl O, Gabka CJ, Hamann U, Braun M, Feller AM, Heinemann V, Siegele B, Nagel D, Holdenrieder S. Prediction of response to neoadjuvant chemotherapy in breast cancer patients by circulating apoptotic biomarkers nucleosomes, DNAse, cytokeratin-18 fragments and survivin. Cancer Letters. August 2013, 336 (1): 140–8. PMID 23612068. doi:10.1016/j.canlet.2013.04.013. 
  16. ^ Mandel P, Metais P. Les Acides Nucléiques Du Plasma Sanguin Chez l'Homme. Comptes Rendus des Séances de la Société de Biologie et de ses Filiales. February 1948, 142 (3–4): 241–3. PMID 18875018. 
  17. ^ Tan EM, Schur PH, Carr RI, Kunkel HG. Deoxyribonucleic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus. The Journal of Clinical Investigation. November 1966, 45 (11): 1732–40. PMC 292857 . PMID 4959277. doi:10.1172/jci105479. 
  18. ^ Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Research. March 1977, 37 (3): 646–50. PMID 837366. 
  19. ^ 19.0 19.1 Vasioukhin V, Anker P, Maurice P, Lyautey J, Lederrey C, Stroun M. Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. British Journal of Haematology. April 1994, 86 (4): 774–779. PMID 7918071. S2CID 26365875. doi:10.1111/j.1365-2141.1994.tb04828.x. 
  20. ^ Vasioukhin V, Stroun M, Maurice P, Lyautey J, Lederrey C, Anker P. K-ras point mutations in the blood plasma DNA of patients with colorectal tumors. Challenges of Modern Medicine: Biotechnology Today. May 1994, 5: 141–150. 
  21. ^ Sorenson GD, Pribish DM, Valone FH, Memoli VA, Bzik DJ, Yao SL. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiology, Biomarkers & Prevention. January 1994, 3 (1): 67–71. PMID 8118388. 
  22. ^ Arneth B. Update on the types and usage of liquid biopsies in the clinical setting: a systematic review. BMC Cancer. May 2018, 18 (1): 527. PMC 5935950 . PMID 29728089. doi:10.1186/s12885-018-4433-3. 
  23. ^ Babayan A, Pantel K. Advances in liquid biopsy approaches for early detection and monitoring of cancer. Genome Medicine. March 2018, 10 (1): 21. PMC 5861602 . PMID 29558971. doi:10.1186/s13073-018-0533-6. 
  24. ^ 24.0 24.1 Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, Malech HL, Ledbetter JA, Elkon KB, Kaplan MJ. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nature Medicine. February 2016, 22 (2): 146–53. PMC 4742415 . PMID 26779811. doi:10.1038/nm.4027. 
  25. ^ Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR. Mitochondrial origins. Proc Natl Acad Sci U S A. July 1985, 82 (13): 4443–7. PMC 391117 . PMID 3892535. doi:10.1073/pnas.82.13.4443 . 
  26. ^ Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. March 2010, 464 (7285): 104–7. Bibcode:2010Natur.464..104Z. PMC 2843437 . PMID 20203610. doi:10.1038/nature08780. 
  27. ^ 27.0 27.1 Collins LV, Hajizadeh S, Holme E, Jonsson IM, Tarkowski A. Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. Journal of Leukocyte Biology. June 2004, 75 (6): 995–1000. PMID 14982943. S2CID 6180899. doi:10.1189/jlb.0703328. 
  28. ^ Clayton DA, Doda JN, Friedberg EC. Absence of a pyrimidine dimer repair mechanism for mitochondrial DNA in mouse and human cells. Basic Life Sci. 1975, 5B: 589–91. PMID 1238079. doi:10.1007/978-1-4684-2898-8_26. 
  29. ^ Duvvuri, Bhargavi; Lood, Christian. Cell-Free DNA as a Biomarker in Autoimmune Rheumatic Diseases. Frontiers in Immunology. 2019-03-19, 10 [2023-07-03]. ISSN 1664-3224. doi:10.3389/fimmu.2019.00502. (原始內容存檔於2020-03-29). 
  30. ^ Kubiritova, Zuzana; Radvanszky, Jan; Gardlik, Roman. Cell-Free Nucleic Acids and their Emerging Role in the Pathogenesis and Clinical Management of Inflammatory Bowel Disease. International Journal of Molecular Sciences. 2019-07-26, 20 (15) [2023-07-03]. ISSN 1422-0067. doi:10.3390/ijms20153662. (原始內容存檔於2023-07-03) (英語). 
  31. ^ Lo, Y. M. Dennis; Han, Diana S. C.; Jiang, Peiyong; Chiu, Rossa W. K. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science. 2021-04-09, 372 (6538) [2023-07-03]. ISSN 0036-8075. doi:10.1126/science.aaw3616. (原始內容存檔於2023-07-03) (英語). 
  32. ^ Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, Rentsendorj A, Vargas M, Guerrero C, Wang Y, Fitzgerald KA, Underhill DM, Town T, Arditi M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. March 2012, 36 (3): 401–14. PMC 3312986 . PMID 22342844. doi:10.1016/j.immuni.2012.01.009. 
  33. ^ 引用錯誤:沒有為名為Duvvuri Lood的參考文獻提供內容
  34. ^ West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, Bestwick M, Duguay BA, Raimundo N, MacDuff DA, Kaech SM, Smiley JR, Means RE, Iwasaki A, Shadel GS. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. April 2015, 520 (7548): 553–7. Bibcode:2015Natur.520..553W. PMC 4409480 . PMID 25642965. doi:10.1038/nature14156. 
  35. ^ Lui YY, Chik KW, Chiu RW, Ho CY, Lam CW, Lo YM. Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clinical Chemistry. March 2002, 48 (3): 421–7. PMID 11861434. doi:10.1093/clinchem/48.3.421 . 
  36. ^ Page K, Guttery DS, Zahra N, Primrose L, Elshaw SR, Pringle JH, Blighe K, Marchese SD, Hills A, Woodley L, Stebbing J, Coombes RC, Shaw JA. Influence of plasma processing on recovery and analysis of circulating nucleic acids. PLOS ONE. 2013-10-18, 8 (10): e77963. Bibcode:2013PLoSO...877963P. PMC 3799744 . PMID 24205045. doi:10.1371/journal.pone.0077963 . 
  37. ^ Barták BK, Kalmár A, Galamb O, Wichmann B, Nagy ZB, Tulassay Z, Dank M, Igaz P, Molnár B. Blood Collection and Cell-Free DNA Isolation Methods Influence the Sensitivity of Liquid Biopsy Analysis for Colorectal Cancer Detection. Pathology & Oncology Research. January 2018, 25 (3): 915–923. PMID 29374860. S2CID 24629831. doi:10.1007/s12253-018-0382-z. 
  38. ^ Pérez-Barrios C, Nieto-Alcolado I, Torrente M, Jiménez-Sánchez C, Calvo V, Gutierrez-Sanz L, Palka M, Donoso-Navarro E, Provencio M, Romero A. Comparison of methods for circulating cell-free DNA isolation using blood from cancer patients: impact on biomarker testing. Translational Lung Cancer Research. December 2016, 5 (6): 665–672. PMC 5233878 . PMID 28149760. doi:10.21037/tlcr.2016.12.03. 
  39. ^ Volik S, Alcaide M, Morin RD, Collins C. Cell-free DNA (cfDNA): Clinical Significance and Utility in Cancer Shaped By Emerging Technologies. Molecular Cancer Research. October 2016, 14 (10): 898–908 [2023-07-03]. PMID 27422709. doi:10.1158/1541-7786.MCR-16-0044 . (原始內容存檔於2019-05-29). 
  40. ^ Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DW, Kaper F, Dawson SJ, Piskorz AM, Jimenez-Linan M, Bentley D, Hadfield J, May AP, Caldas C, Brenton JD, Rosenfeld N. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Science Translational Medicine. May 2012, 4 (136): 136ra68. PMID 22649089. S2CID 34723244. doi:10.1126/scitranslmed.3003726. 
  41. ^ Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, Liu CL, Neal JW, Wakelee HA, Merritt RE, Shrager JB, Loo BW, Alizadeh AA, Diehn M. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nature Medicine. May 2014, 20 (5): 548–54. PMC 4016134 . PMID 24705333. doi:10.1038/nm.3519. 
  42. ^ Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nature Reviews. Cancer. June 2011, 11 (6): 426–37. PMID 21562580. S2CID 6061607. doi:10.1038/nrc3066. 
  43. ^ van der Pol Y, Mouliere F. Toward the early detection of cancer by decoding the epigenetic and environmental fingerprints of cell-free DNA.. Cancer Cell. 2019, 36 (4): 350–368. PMID 31614115. doi:10.1016/j.ccell.2019.09.003 . 
  44. ^ Mouliere F, Smith CG, Heider K, Su J, van der Pol Y, Thompson M, Morris J, Wan JM, Chandrananda D, Hadfield J, Grzelak M, Hudecova I, Couturier DL, Cooper W, Zhao H, Gale D, Eldridge M, Watts C, Brindle K, Rosenfeld N, Mair R. Fragmentation patterns and personalized sequencing of cell-free DNA in urine and plasma of glioma patients. EMBO Mol Med. August 2021, 13 (8): e12881. PMC 8350897 . PMID 34291583. doi:10.15252/emmm.202012881 . 
  45. ^ Eibl RH, Schneemann M. Cell-free DNA as a biomarker in cancer. Extracell Vesicles Circ Nucleic Acid. August 2022, 3: 178-98. doi:10.20517/evcna.2022.20 . 
  46. ^ Lo YM, Rainer TH, Chan LY, Hjelm NM, Cocks RA. Plasma DNA as a prognostic marker in trauma patients. Clinical Chemistry. March 2000, 46 (3): 319–23. PMID 10702517. doi:10.1093/clinchem/46.3.319 . 
  47. ^ Chiu TW, Young R, Chan LY, Burd A, Lo DY. Plasma cell-free DNA as an indicator of severity of injury in burn patients. Clinical Chemistry and Laboratory Medicine. 2006, 44 (1): 13–7. PMID 16375578. S2CID 37876738. doi:10.1515/CCLM.2006.003. 
  48. ^ Rhodes A, Wort SJ, Thomas H, Collinson P, Bennett ED. Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients. Critical Care. 2006, 10 (2): R60. PMC 1550922 . PMID 16613611. doi:10.1186/cc4894. 
  49. ^ Martins GA, Kawamura MT, Carvalho M. Detection of DNA in the plasma of septic patients. Annals of the New York Academy of Sciences. April 2000, 906 (1): 134–40. Bibcode:2000NYASA.906..134M. PMID 10818609. S2CID 36198236. doi:10.1111/j.1749-6632.2000.tb06603.x. 
  50. ^ Chang CP, Chia RH, Wu TL, Tsao KC, Sun CF, Wu JT. Elevated cell-free serum DNA detected in patients with myocardial infarction. Clinica Chimica Acta; International Journal of Clinical Chemistry. January 2003, 327 (1–2): 95–101. PMID 12482623. doi:10.1016/S0009-8981(02)00337-6. 
  51. ^ Rainer TH, Lam NY, Man CY, Chiu RW, Woo KS, Lo YM. Plasma beta-globin DNA as a prognostic marker in chest pain patients. Clinica Chimica Acta; International Journal of Clinical Chemistry. June 2006, 368 (1–2): 110–3. PMID 16480967. doi:10.1016/j.cca.2005.12.021. 
  52. ^ 52.0 52.1 Beck J, Oellerich M, Schulz U, Schauerte V, Reinhard L, Fuchs U, Knabbe C, Zittermann A, Olbricht C, Gummert JF, Shipkova M, Birschmann I, Wieland E, Schütz E. Donor-Derived Cell-Free DNA Is a Novel Universal Biomarker for Allograft Rejection in Solid Organ Transplantation. Transplantation Proceedings. October 2015, 47 (8): 2400–3. PMID 26518940. doi:10.1016/j.transproceed.2015.08.035. 
  53. ^ 53.0 53.1 Grskovic M. Validation of a Clinical-Grade Assay to Measure Donor-Derived Cell-Free DNA in Solid Organ Transplant Recipients. The Journal of Molecular Diagnostics. November 2016, 18 (6): 890–902. PMID 27727019. doi:10.1016/j.jmoldx.2016.07.003 . 
  54. ^ Olson, Lyra B.; Hunter, Nicole I.; Rempel, Rachel E.; Yu, Haixiang; Spencer, Diane M.; Sullenger, Cynthia Z.; Greene, William S.; Varanko, Anastasia K.; Eghtesadi, Seyed A.; Chilkoti, Ashutosh; Pisetsky, David S. Mixed-surface polyamidoamine polymer variants retain nucleic acid-scavenger ability with reduced toxicity. iScience. 2022-12, 25 (12). ISSN 2589-0042. doi:10.1016/j.isci.2022.105542. 
  55. ^ Liang, Huiyi; Peng, Bo; Dong, Cong; Liu, Lixin; Mao, Jiaji; Wei, Song; Wang, Xinlu; Xu, Hanshi; Shen, Jun; Mao, Hai-Quan; Gao, Xiaohu. Cationic nanoparticle as an inhibitor of cell-free DNA-induced inflammation. Nature Communications. 2018-10-16, 9 (1). ISSN 2041-1723. doi:10.1038/s41467-018-06603-5. 
  56. ^ Yan, Yanzi; Liang, Huiyi; Liu, Xingliang; Liu, Lixin; Chen, Yongming. Topical cationic hairy particles targeting cell free DNA in dermis enhance treatment of psoriasis. Biomaterials. 2021-09, 276. ISSN 0142-9612. doi:10.1016/j.biomaterials.2021.121027. 
  57. ^ Liu, Feng; Sheng, Shu; Shao, Dan; Xiao, Yongqiang; Zhong, Yiling; Zhou, Jie; Quek, Chai Hoon; Wang, Yanbing; Hu, Zhiming; Liu, Heshi; Li, Yanhui. A Cationic Metal–Organic Framework to Scavenge Cell-Free DNA for Severe Sepsis Management. Nano Letters. 2021-03-09, 21 (6). ISSN 1530-6984. doi:10.1021/acs.nanolett.0c04759. 
  58. ^ Huang, Hanyao; Pan, Weiyi; Wang, Yifan; Kim, Hye Sung; Shao, Dan; Huang, Baoding; Ho, Tzu-Chieh; Lao, Yeh-Hsing; Quek, Chai Hoon; Shi, Jiayu; Chen, Qianming. Nanoparticulate cell-free DNA scavenger for treating inflammatory bone loss in periodontitis. Nature Communications. 2022-10-07, 13 (1). ISSN 2041-1723. doi:10.1038/s41467-022-33492-6. 
  59. ^ Pinzani P, Salvianti F, Pazzagli M, Orlando C. Circulating nucleic acids in cancer and pregnancy. Methods. April 2010, 50 (4): 302–7. PMID 20146940. doi:10.1016/j.ymeth.2010.02.004.