硬化年代學(Sclerochronology)主要研究無脊椎動物和珊瑚紅藻增生硬組織的物理和化學變化以及所形成的時間背景,在海洋古氣候學的研究中特別有用。該術語是1974年 [1]克努特森(Knutson)和巴德梅爾(Buddemeier)在核試驗環礁進行的開創性研究基礎上提出的[2],由三個希臘語單詞「硬」(skleros)、「時間」(chronos)和「科學」(logos)所構成,合在一起是指代利用生物體的堅硬部分來排序事件時間,因此,它隸屬於地層學的一個分支。硬化年代學主要關注反映年、月、雙周、潮汐、天和晝夜(日節律)內等時間中的生長模式。

規律的時間變化是由生物鐘控制,反過來,生物鐘又受環境和天文的調節作用所引導。

常見的事例包括造礁珊瑚骨架中每年增長的環帶,或軟體動物貝殼中每年、雙周、每日和晝夜的生長增量,以及魚類耳骨中被稱為耳石的年度性結石。硬化年代學類似於研究樹木年輪的樹輪年代學,也同樣試圖推斷出生物的生命史特徵並穿越時空重建環境和氣候變化史記錄。

研究各類生物群硬體的硬化年代學現在常被用於古海洋和古氣候重建[3][4][5][6][7],該研究包括同位素和元素替代物,有時稱為硬化化學[8]

成像技術的改進現在已實現了以每日解像度來解讀珊瑚環帶的潛力[9],儘管生物「活力」效應在如此高的解像度下可能會模糊氣候信號。

另請查看

編輯

參考資料

編輯
  1. ^ Buddemeier, R. W., Maragos, J. E., and Knutson, D. W. 1974. Radiographic studies of reef coral exoskeletons: Rates and patterns of coral growth. Journal of Experimental Marine Biology and Ecology 14, 179-199.
  2. ^ Knutson, D. W., Buddemeier, R. W., and Smith, S. V. 1972. Coral Chronometers: Seasonal Growth Bands in Reef Corals. Science 177, 270-272.
  3. ^ Schöne, B.R., Oschmann, W., Kröncke, I., Dreyer, W., Janssen, R., Rumohr, H., Houk, S.D., Freyre Castro, A.D., Dunca, E. and Rössler, J. (2003). North Atlantic Oscillation dynamics recorded in shells of a long-lived bivalve mollusk. Geology 31, 1237–1240.
  4. ^ Wanamaker, A.D. Jr., Kreutz, K.J., Schöne, B.R., Pettigrew, N., Borns, H.W., Introne, D.S., Belknap, D., Maasch, K.A. and Feindel, S. 2008. Coupled North Atlantic slopewater forcing on Gulf of Maine temperatures over the past millennium. Climate Dynamics 31, 183-194.
  5. ^ Corrège, T., Gagan, M.K., Beck, J.W., Burr, G.S., Cabioch, G & Le Cornec, F. 2004. Interdecadal variation in the extent of South Pacific tropical waters during the Younger Dryas event. Nature 428, 927-929.
  6. ^ Halfar, J., Steneck, R.S., Joachimski, M, Kronz, A. & Wanamaker A.D. Jr. 2008. Coralline red algae as high-resolution climate recorders. Geology, 36, 463-466.
  7. ^ Black, B.A., Copenheaver, C.A., Frank, D.C., Stuckey, M.J. and Kormanyos, R.E. 2009. Multi-proxy reconstructions of northeastern Pacific sea surface temperature data from trees and Pacific geoduck. Palaeogeography, Palaeoclimatology, Palaeoecology 278, 40–47.
  8. ^ Gröcke D. R. and D. P. Gillikin, (2008). Advances in mollusc sclerochronology and sclerochemistry: tools for understanding climate and environment. Geo-Marine Letters 28: 265-268.
  9. ^ Gill, I. P., Dickson, J. A. D., and Hubbard, D. K. 2006. Daily banding in corals: Implications for paleoclimatic reconstruction and skeletonization. Journal of Sedimentary Research 76, 683-688.

外部連結

編輯