葡萄糖轉運蛋白4型
葡萄糖轉運蛋白4型(英語:Glucose transporter type 4,簡稱GLUT4),也稱為溶質載體家族2(solute carrier family 2)和促進葡萄糖轉運蛋白成員4(facilitated glucose transporter member 4),是一種在人類中由SLC2A4基因編碼的蛋白質。GLUT4是調節胰島素的葡萄糖轉運蛋白,主要存在於脂肪組織和橫紋肌(骨骼肌和心臟)中。大衛·詹姆斯於1988年提供了這種獨特的葡萄糖轉運蛋白的第一個證據。[1]編碼GLUT4的基因於1989年被克隆[2][3]和定位。[4]
葡萄糖轉運蛋白4型 | |||||||
---|---|---|---|---|---|---|---|
識別號 | |||||||
別名 | ;Glc_transpt_4IPR002441GLUT4Gtr4Glut-4Insulin-responsive facilitative glucose transporter | ||||||
外部ID | GeneCards:[1] | ||||||
直系同源 | |||||||
物種 | 人類 | 小鼠 | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
mRNA序列 |
|
| |||||
蛋白序列 |
|
| |||||
基因位置(UCSC) | 無數據 | 無數據 | |||||
PubMed查找 | 無數據 | 無數據 | |||||
維基數據 | |||||||
|
在細胞表面,GLUT4允許循環葡萄糖沿着其濃度梯度擴散到肌肉和脂肪細胞中。進入細胞後,葡萄糖被肝臟中的葡萄糖激酶和其他組織中的己糖激酶迅速磷酸化,形成葡萄糖-6-磷酸,然後進入糖酵解或聚合成糖原。葡萄糖-6-磷酸不能擴散回細胞外,這也有助於維持葡萄糖被動進入細胞的濃度梯度。[5]
結構
編輯與所有蛋白質一樣,GLUT4一級序列中獨特的氨基酸排列使其能夠跨質膜轉運葡萄糖。除了N末端的苯丙氨酸外,COOH末端的兩個白氨酸殘基和酸性基序被認為在胞吞作用和胞吐作用的動力學中起着關鍵作用。[7]
其它葡萄糖轉運蛋白
編輯根據序列相似性,共有14種葡萄糖轉運蛋白(GLUT)分為3類。第1類包含GLUT1至4和14,第2類包含GLUT5、7、9和11,第3類包含GLUT6、8、10、12和13。
儘管所有葡萄糖轉運蛋白之間存在一些序列差異,但它們都具有一些基本結構成分。例如,葡萄糖轉運蛋白的N端和C端都暴露在細胞質中,它們都有12個跨膜片段。[8]
組織分佈
編輯骨骼肌
編輯在橫紋骨骼肌細胞中,運動或肌肉收縮會增加質膜中的GLUT4濃度。
在運動過程中,身體需要將葡萄糖轉化為ATP以用作能量。隨着葡萄糖-6-磷酸濃度降低,己糖激酶受到的抑制減少,並且生成ATP的糖酵解和氧化途徑能夠繼續進行。這也意味着隨着細胞內濃度的降低,肌肉細胞能夠吸收更多的葡萄糖。為了增加細胞中的葡萄糖水平,GLUT4是這種促進擴散中使用的初級轉運蛋白。[10]
儘管肌肉收縮以類似的方式發揮作用並且還誘導GLUT4易位到質膜中,但這兩個骨骼肌過程獲得不同形式的細胞內GLUT4。GLUT4載體囊泡為轉鐵蛋白陽性或陰性,並由不同的刺激物募集。陽性轉鐵蛋白GLUT4囊泡在肌肉收縮過程中被利用,而陰性轉鐵蛋白囊泡則被胰島素刺激和運動活化。[11][12]
心肌
編輯心肌與骨骼肌略有不同。在休息時,他們更喜歡利用脂肪酸作為主要能量來源。隨着活動的增加,它開始更快地泵血,心肌開始以更高的速度氧化葡萄糖。[13]
對心肌中GLUT1和GLUT4的mRNA水平的分析表明,與在骨骼肌中相比,GLUT1在心肌中的作用更大。[14]然而,GLUT4仍然被認為是葡萄糖的初級轉運蛋白。[15]
與其他組織非常相似,GLUT4也對胰島素信號作出反應,並被轉運到質膜中以促進葡萄糖擴散到細胞中。[16][17]
脂肪組織
編輯脂肪組織是能量的儲存庫,以保持代謝穩態。當身體以葡萄糖的形式吸收能量時,一些會被消耗掉,其餘的會以糖原的形式儲存(主要在肝臟、肌肉細胞中),或在脂肪組織中以三酸甘油酯的形式儲存。[18]
葡萄糖的攝入和能量消耗的不平衡已被證明會導致脂肪細胞肥大和增生,從而導致肥胖。[19]此外,脂肪細胞中GLUT4基因的突變也會導致脂肪細胞中GLUT4表達增加,從而增加葡萄糖攝取,從而儲存更多脂肪。如果GLUT4過度表達,它實際上會改變營養分配並將過量的葡萄糖輸送到脂肪組織中,從而導致脂肪組織質量增加。[19]
調節
編輯胰島素
編輯隨着血液中葡萄糖濃度的增加,胰島素從胰腺釋放並進入血流。[20]胰島素儲存在胰腺的胰島β細胞中。當血液中的葡萄糖與胰島β細胞膜上的葡萄糖受體結合時,信號級聯會在細胞內啟動,導致儲存在這些細胞的囊泡中的胰島素被釋放到血流中。[21]胰島素水平升高導致細胞吸收葡萄糖。GLUT4儲存在細胞的運輸囊泡中,當胰島素與膜受體結合時,它會迅速摻入細胞的質膜中。[18]
在低胰島素條件下,大多數GLUT4被隔離在肌肉和脂肪細胞的細胞內囊泡中。當囊泡與質膜融合時,GLUT4轉運蛋白被插入並可用於轉運葡萄糖以及葡萄糖吸收增加。[22]基因工程肌肉胰島素受體敲除(MIRKO)小鼠被設計為對胰島素引起的葡萄糖攝取不敏感,這意味着GLUT4不存在。然而,發現患有糖尿病或空腹高血糖症的小鼠對不敏感的負面影響具有免疫力。[23]
GLUT4的機制是級聯效應的一個例子,其中配體與膜受體的結合會放大信號並引起細胞反應。在這種情況下,胰島素以二聚體形式與胰島素受體結合併活化受體的酪氨酸激酶結構域。然後受體募集胰島素受體基質1(IRS1),它結合磷酸肌醇3-激酶。磷酸肌醇3-激酶將膜脂PIP2轉化為PIP3。PIP3被蛋白激酶B和PDK1特別識別,PDK1可以磷酸化並活化PKB。磷酸化後,PKB處於活性形式並磷酸化TBC1D4,從而抑制與TBC1D4相關的三磷酸鳥苷酶活化結構域,從而使Rab蛋白從其二磷酸鳥苷變為三磷酸鳥苷結合狀態。三磷酸鳥苷酶活化結構域的抑制使級聯中的下一個蛋白質以其活性形式存在,並刺激GLUT4在質膜上表達。[24]
RAC1是一種三磷酸鳥苷,也被胰島素活化。Rac1刺激皮質肌動蛋白血球骨架的重組,[25]從而允許GLUT4囊泡插入質膜。[26][27]RAC1基因敲除小鼠肌肉組織中的葡萄糖攝取減少。[27]
GLUT4雜合子基因敲除小鼠的肌肉會出現胰島素抵抗以及糖尿病。[28]
肌肉收縮
編輯肌肉收縮刺激肌肉細胞將GLUT4受體轉移到它們的表面。在心肌中尤其如此,連續收縮會增加GLUT4易位率;但在較小程度上觀察到骨骼肌收縮增加。[29]在骨骼肌中,肌肉收縮使GLUT4易位增加數倍,[30]這可能受RAC1[31][32]和一磷酸腺苷活化蛋白激酶的調節。[33]
肌肉拉伸
編輯相互作用
編輯GLUT4已被證明與死亡相關蛋白6(也稱為Daxx)相互作用。用於調節細胞凋亡的Daxx已被證明與細胞質中的GLUT4相關。UBX結構域,例如在GLUT4中發現的結構域,已被證明與凋亡信號有關。[35]因此,這種相互作用有助於Daxx在細胞內的易位。[36]
此外,最近的報道表明在海馬體等中樞神經系統中存在GLUT4基因。此外,海馬體中胰島素刺激的GLUT4運輸受損導致海馬體神經元的代謝活動和可塑性降低,從而導致抑鬱樣行為和認知功能障礙。[37][38][39]
交互式路徑圖
編輯參考文獻
編輯- ^ James DE, Brown R, Navarro J, Pilch PF. Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein. Nature. May 1988, 333 (6169): 183–5. Bibcode:1988Natur.333..183J. PMID 3285221. S2CID 4237493. doi:10.1038/333183a0.
- ^ James DE, Strube M, Mueckler M. Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature. March 1989, 338 (6210): 83–7. Bibcode:1989Natur.338...83J. PMID 2645527. S2CID 4285627. doi:10.1038/338083a0.
- ^ Birnbaum MJ. Identification of a novel gene encoding an insulin-responsive glucose transporter protein. Cell. April 1989, 57 (2): 305–15. PMID 2649253. S2CID 20359706. doi:10.1016/0092-8674(89)90968-9.
- ^ Bell GI, Murray JC, Nakamura Y, Kayano T, Eddy RL, Fan YS, Byers MG, Shows TB. Polymorphic human insulin-responsive glucose-transporter gene on chromosome 17p13. Diabetes. August 1989, 38 (8): 1072–5. PMID 2568955. doi:10.2337/diabetes.38.8.1072.
- ^ Watson RT, Kanzaki M, Pessin JE. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocrine Reviews. April 2004, 25 (2): 177–204. PMID 15082519. doi:10.1210/er.2003-0011 .
- ^ Buchberger A, Howard MJ, Proctor M, Bycroft M. The UBX domain: a widespread ubiquitin-like module. Journal of Molecular Biology. March 2001, 307 (1): 17–24. PMID 11243799. doi:10.1006/jmbi.2000.4462.
- ^ Huang S, Czech MP. The GLUT4 glucose transporter. Cell Metabolism. April 2007, 5 (4): 237–52. PMID 17403369. doi:10.1016/j.cmet.2007.03.006 .
- ^ Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Molecular Aspects of Medicine. 2013, 34 (2–3): 121–38. PMC 4104978 . PMID 23506862. doi:10.1016/j.mam.2012.07.001.
- ^ Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. 16.1: Oxidation of Glucose and Fatty Acids to CO2. Molecular Cell Biology 4th. New York: W. H. Freeman. 2000. ISBN 978-0-7167-3706-3.
- ^ Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiological Reviews. July 2013, 93 (3): 993–1017. PMID 23899560. doi:10.1152/physrev.00038.2012 (英語).
- ^ Ploug T, van Deurs B, Ai H, Cushman SW, Ralston E. Analysis of GLUT4 distribution in whole skeletal muscle fibers: identification of distinct storage compartments that are recruited by insulin and muscle contractions. The Journal of Cell Biology. September 1998, 142 (6): 1429–46. PMC 2141761 . PMID 9744875. doi:10.1083/jcb.142.6.1429 (英語).
- ^ Lauritzen HP. Insulin- and contraction-induced glucose transporter 4 traffic in muscle: insights from a novel imaging approach. Exercise and Sport Sciences Reviews. April 2013, 41 (2): 77–86. PMC 3602324 . PMID 23072821. doi:10.1097/JES.0b013e318275574c.
- ^ Morgan HE, Henderson MJ, Regen DM, Park CR. Regulation of glucose uptake in heart muscle from normal and alloxan-diabetic rats: the effects of insulin, growth hormone, cortisone, and anoxia. Annals of the New York Academy of Sciences. September 1959, 82 (2): 387–402. Bibcode:1959NYASA..82..387M. PMID 14424107. S2CID 32458568. doi:10.1111/j.1749-6632.1959.tb44920.x.
- ^ Laybutt DR, Thompson AL, Cooney GJ, Kraegen EW. Selective chronic regulation of GLUT1 and GLUT4 content by insulin, glucose, and lipid in rat cardiac muscle in vivo. The American Journal of Physiology. September 1997, 273 (3 Pt 2): H1309–16. PMID 9321820. doi:10.1152/ajpheart.1997.273.3.H1309 (英語).
- ^ Rett K, Wicklmayr M, Dietze GJ, Häring HU. Insulin-induced glucose transporter (GLUT1 and GLUT4) translocation in cardiac muscle tissue is mimicked by bradykinin. Diabetes. January 1996,. 45 Suppl 1 (Supplement 1): S66–9. PMID 8529803. S2CID 7766813. doi:10.2337/diab.45.1.S66 (英語).
- ^ Slot JW, Geuze HJ, Gigengack S, James DE, Lienhard GE. Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proceedings of the National Academy of Sciences of the United States of America. September 1991, 88 (17): 7815–9. Bibcode:1991PNAS...88.7815S. PMC 52394 . PMID 1881917. doi:10.1073/pnas.88.17.7815 (英語).
- ^ Luiken JJ, Glatz JF, Neumann D. Cardiac contraction-induced GLUT4 translocation requires dual signaling input (PDF). Trends Endocrinol Metab. August 2015, 26 (8): 404–10 [2022-12-10]. PMID 26138758. S2CID 171571. doi:10.1016/j.tem.2015.06.002. (原始內容存檔 (PDF)於2022-12-04).
- ^ 18.0 18.1 Favaretto F, Milan G, Collin GB, Marshall JD, Stasi F, Maffei P, Vettor R, Naggert JK. GLUT4 defects in adipose tissue are early signs of metabolic alterations in Alms1GT/GT, a mouse model for obesity and insulin resistance. PLOS ONE. 2014-10-09, 9 (10): e109540. Bibcode:2014PLoSO...9j9540F. PMC 4192353 . PMID 25299671. doi:10.1371/journal.pone.0109540 .
- ^ 19.0 19.1 Shepherd PR, Gnudi L, Tozzo E, Yang H, Leach F, Kahn BB. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. The Journal of Biological Chemistry. October 1993, 268 (30): 22243–6. PMID 8226728. doi:10.1016/S0021-9258(18)41516-5 .
- ^ Insulin Synthesis and Secretion. www.vivo.colostate.edu. [2017-05-24]. (原始內容存檔於2022-12-04).
- ^ Fu, Zhuo. Regulation of Insulin Synthesis and Secretion and Pancreatic Beta-Cell Dysfunction in Diabetes. Curr Diabetes Rev. 2013, 9 (1): 25–53. PMC 3934755 . PMID 22974359. doi:10.2174/1573399811309010025.
- ^ Cushman SW, Wardzala LJ. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane (PDF). The Journal of Biological Chemistry. May 1980, 255 (10): 4758–62 [2022-12-10]. PMID 6989818. doi:10.1016/S0021-9258(19)85561-8 . (原始內容存檔 (PDF)於2017-05-17).
- ^ Sonksen P, Sonksen J. Insulin: understanding its action in health and disease. British Journal of Anaesthesia. July 2000, 85 (1): 69–79. PMID 10927996. doi:10.1093/bja/85.1.69 (英語).
- ^ Leto, Dara; Saltiel, Alan R. Regulation of glucose transport by insulin: traffic control of GLUT4. Nature Reviews Molecular Cell Biology. May 2012, 13 (6): 383–396. ISSN 1471-0072. PMID 22617471. S2CID 39756994. doi:10.1038/nrm3351 (英語).
- ^ JeBailey L, Wanono O, Niu W, Roessler J, Rudich A, Klip A. Ceramide- and oxidant-induced insulin resistance involve loss of insulin-dependent Rac-activation and actin remodeling in muscle cells. Diabetes. February 2007, 56 (2): 394–403. PMID 17259384. doi:10.2337/db06-0823 .
- ^ Sylow L, Kleinert M, Pehmøller C, Prats C, Chiu TT, Klip A, Richter EA, Jensen TE. Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cellular Signalling. February 2014, 26 (2): 323–31. PMID 24216610. doi:10.1016/j.cellsig.2013.11.007.
- ^ 27.0 27.1 Sylow L, Jensen TE, Kleinert M, Højlund K, Kiens B, Wojtaszewski J, Prats C, Schjerling P, Richter EA. Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle. Diabetes. June 2013, 62 (6): 1865–75. PMC 3661612 . PMID 23423567. doi:10.2337/db12-1148.
- ^ Stenbit AE, Tsao TS, Li J, Burcelin R, Geenen DL, Factor SM, Houseknecht K, Katz EB, Charron MJ. GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes. Nature Medicine. October 1997, 3 (10): 1096–101. PMID 9334720. S2CID 8643507. doi:10.1038/nm1097-1096.
- ^ Lund S, Holman GD, Schmitz O, Pedersen O. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proceedings of the National Academy of Sciences of the United States of America. June 1995, 92 (13): 5817–21. Bibcode:1995PNAS...92.5817L. PMC 41592 . PMID 7597034. doi:10.1073/pnas.92.13.5817 .
- ^ Jensen TE, Sylow L, Rose AJ, Madsen AB, Angin Y, Maarbjerg SJ, Richter EA. Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca(2+) release. Molecular Metabolism. October 2014, 3 (7): 742–53. PMC 4209358 . PMID 25353002. doi:10.1016/j.molmet.2014.07.005.
- ^ Sylow L, Møller LL, Kleinert M, Richter EA, Jensen TE. Rac1--a novel regulator of contraction-stimulated glucose uptake in skeletal muscle. Experimental Physiology. December 2014, 99 (12): 1574–80. PMID 25239922. doi:10.1113/expphysiol.2014.079194 .
- ^ Sylow L, Jensen TE, Kleinert M, Mouatt JR, Maarbjerg SJ, Jeppesen J, Prats C, Chiu TT, Boguslavsky S, Klip A, Schjerling P, Richter EA. Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle. Diabetes. April 2013, 62 (4): 1139–51. PMC 3609592 . PMID 23274900. doi:10.2337/db12-0491.
- ^ Mu J, Brozinick JT, Valladares O, Bucan M, Birnbaum MJ. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Molecular Cell. May 2001, 7 (5): 1085–94. PMID 11389854. doi:10.1016/s1097-2765(01)00251-9 .
- ^ Sylow L, Møller LL, Kleinert M, Richter EA, Jensen TE. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1. The Journal of Physiology. February 2015, 593 (3): 645–56. PMC 4324711 . PMID 25416624. doi:10.1113/jphysiol.2014.284281.
- ^ 引用錯誤:沒有為名為
Buchberger_2001
的參考文獻提供內容 - ^ Lalioti VS, Vergarajauregui S, Pulido D, Sandoval IV. The insulin-sensitive glucose transporter, GLUT4, interacts physically with Daxx. Two proteins with capacity to bind Ubc9 and conjugated to SUMO1. The Journal of Biological Chemistry. May 2002, 277 (22): 19783–91. PMID 11842083. doi:10.1074/jbc.M110294200 .
- ^ Patel SS, Udayabanu M. Urtica dioica extract attenuates depressive like behavior and associative memory dysfunction in dexamethasone induced diabetic mice. Metabolic Brain Disease. March 2014, 29 (1): 121–30. PMID 24435938. S2CID 10955351. doi:10.1007/s11011-014-9480-0.
- ^ Piroli GG, Grillo CA, Reznikov LR, Adams S, McEwen BS, Charron MJ, Reagan LP. Corticosterone impairs insulin-stimulated translocation of GLUT4 in the rat hippocampus. Neuroendocrinology. 2007, 85 (2): 71–80. PMID 17426391. S2CID 38081413. doi:10.1159/000101694.
- ^ Huang CC, Lee CC, Hsu KS. The role of insulin receptor signaling in synaptic plasticity and cognitive function. Chang Gung Medical Journal. 2010, 33 (2): 115–25. PMID 20438663.
外部連結
編輯- 醫學主題詞表(MeSH):GLUT4+Protein
- USCD—Nature molecule pages: The signaling pathway", "GLUT4"; contains a high-resolution network map. Accessed 25 December 2009.