集合論中,指示函數是定義在某集合X上的函數,表示其中有哪些元素屬於某一子集A。指示函數有時候也稱為示性函數特徵函數

X的子集A的指示函數是函數,定義為

 若
 若

A的指示函數也記作

簡單性質

編輯

X的子集A對應到它的指示函數的映射是雙射,值域是所有函數 的集合。

如果ABX的兩個子集,那麼

 

以及

 

更一般地,設A1, ..., AnX的子集。對任意 ,可知

 若且唯若x不屬於任何Ak

故有

 

展開左式

   
 

其中|F|是F。這是容斥原理的一個形式。

如上一例子所示,指示函數是組合數學一個有用記法。這記法也用在其他地方,例如在概率論:若X概率空間,有概率測度PA可測集,那麼1A就是隨機變量,其期望值等於A的概率。

 

這等式用於馬爾可夫不等式的一個簡單證明裏。

平均、變異數以及共變異數

編輯

給定一個概率空間   ,其中 指示函數可以被定義成以下形式:

   

平均
 
變異數
 
共變異數
 

指示函數的微分

編輯

以下我們討論一個特別的指示函數,黑維塞函數 

The distributional derivative of the Heaviside step function is equal to the Dirac delta function, i.e.   and similarly the distributional derivative of   is  

Thus the derivative of the Heaviside step function can be seen as the inward normal derivative at the boundary of the domain given by the positive half-line. In higher dimensions, the derivative naturally generalises to the inward normal derivative, while the Heaviside step function naturally generalises to the indicator function of some domain D. The surface of D will be denoted by S. Proceeding, it can be derived that the inward normal derivative of the indicator gives rise to a 'surface delta function', which can be indicated by  :   where n is the outward normal of the surface S. This 'surface delta function' has the following property:[1]  

By setting the function f equal to one, it follows that the inward normal derivative of the indicator integrates to the numerical value of the surface area S.

  1. ^ Lange, Rutger-Jan. Potential theory, path integrals and the Laplacian of the indicator. Journal of High Energy Physics. 2012, 2012 (11): 29–30. Bibcode:2012JHEP...11..032L. S2CID 56188533. arXiv:1302.0864 . doi:10.1007/JHEP11(2012)032.