弯曲时空中的量子场论

粒子物理学中,弯曲时空的量子场论是指将平直时空量子场论推展到弯曲时空。此理论的一般性预测为:重力场或具有视界的非时变重力场皆可导致粒子创生

应用

编辑

此理论最著名的应用为霍金辐射,指出黑洞带有黑体辐射。另一个相关的预测为盎鲁效应,指出加速中的观察者可以观测到真空中出现粒子的热浴,这在惯性观察者是观察不到的。

此外,宇宙暴胀造成的太初密度微扰也可以之计算,而实验上也可透过天文学观测(例如宇宙背景辐射)来验证。

狄拉克方程式也可有弯曲时空中的形式,参见弯曲时空中的狄拉克方程

量子引力的近似

编辑

弯曲时空中的量子场论也可以视作量子引力的初阶近似。更进一步的理论为半古典重力,其考虑了强重力场所造成的粒子创造;此理论仍属古典理论,并且等效原理仍然适用。广义相对论所描述的重力,其不可重整化特性是将重力量子化的主要障碍。[1]

相关条目

编辑

参考文献

编辑
  1. ^ A. Shomer. A pedagogical explanation for the non-renormalizability of gravity. 2007. arXiv:0709.3555 . 

延伸阅读

编辑
  • N.D. Birrell & P.C.W. Davies. Quantum fields in curved space. CUP (1982).
  • S.A. Fulling. Aspects of quantum field theory in curved space-time. CUP (1989).
  • B.S. Kay & R.M. Wald. Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasifree States on Space-Times with a Bifurcate Killing Horizon. Physics Reports 207 (1991) 49-136
  • R.M. Wald. Quantum field theory in curved space-time and black hole thermodynamics. Chicago U. (1995).
  • L. H. Ford. Quantum Field Theory in Curved Spacetime页面存档备份,存于互联网档案馆) (1997).
  • S. Hollands, R.M. Wald. Local Wick polynomials and time ordered products of quantum fields in curved space-time. Commun. Math. Phys. 223 (2001) 289-326
  • R. Verch.A spin statistics theorem for quantum fields on curved space-time manifolds in a generally covariant framework. Commun.Math.Phys. 223 (2001) 261-288
  • S. Hollands, R.M. Wald. On the renormalization group in curved space-time. Commun.Math.Phys. 237 (2003) 123-160
  • A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti and S. Zerbini. Analytic Aspects of Quantum Fields. World Scientific (2003)
  • V. Moretti. Comments on the stress-energy tensor operator in curved spacetime Commun. Math. Phys. 232, (2003) 189-222.
  • R. Brunetti, K. Fredenhagen, R.Verch. The Generally covariant locality principle: A New paradigm for local quantum field theory. Commun. Math. Phys. 237 (2003) 31-68.
  • T. Jacobson Introduction to Quantum Fields in Curved Spacetime and the Hawking Effect页面存档备份,存于互联网档案馆) (2004).
  • V. Mukhanov and S. Winitzki. Introduction to Quantum Effects in Gravity. CUP (2007).
  • L. Parker & D. Toms. Quantum Field Theory in Curved Spacetime. (2009).
  • T.-P. Hack. On the Backreaction of Scalar and Spinor Quantum Fields in Curved Spacetimes (2010) Ph.D.Thesis Hamburg U. (Advisors: K. Fredenhagen, V. Moretti, R. M. Wald)
  • C. Dappiaggi, V. Moretti, N. Pinamonti. Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime. Adv. Theor. Math. Phys. 15, vol 2, (2011) 355-448