理论物理中,向形(orientifold)是对轨形的推广,1987年由Augusto Sagnotti提出。其新颖之处在于,弦论中轨形的非平凡元素包括弦方向的反转;因此,向形化会产生无向弦,即没有携带“箭头”的弦,其两个相反方向是等价的。第一型弦理论是最简单的例子,可通过向形化IIB型弦得到。

用数学术语来说,给定光滑流形,两自由作用离散群世界面宇称算子(使得),向形便可表为商空间。若空,则商空间是轨形;若非空,则是向形。

在弦论的应用

编辑

弦论中, 是通过卷起额外维度得到的紧空间,具体说是6维卡拉比-丘流形。最简单的可行紧空间是由修改环面形成的空间。

超对称破缺

编辑

6维空间采用卡拉比-丘形式,是为了使弦论的超对称部分破缺,以使其更符合现象。第二类弦论有32个实超荷,在6维环面上紧化后,都不会破缺。在更一般的卡拉比-丘6维流形上紧化,则会有3/4的超对称破缺,产生具有8个超荷(N=2)的4维理论。要进一步分解为现象上唯一可行的非平凡超对称(N=1),必须将一半的超对称生成子投影出来,这可通过向形投影来实现。

对场内容的影响

编辑

除了用卡拉比-丘以突破N=2之外,还有更简单的方法:用由环面生成的轨形。这时,研究与空间相关的对称群更简单,因为空间的定义就给出了对称群。

轨形群 仅限于能在环面格上起晶体学作用的群,[1]即保格。 可由对合 生成,注意不要与表示弦长度方向上位置的参数相混淆。对合以不同形式作用于全纯3形式 (同样,不要与上面的宇称算子混淆),取决于所用的弦公式。[2]

  • IIB型:  
  • IIA型: 

向形作用还原到弦向的改变的轨迹,称作向形面。对合不影响时空宏观维度,于是向形可有维度至少为3的O平面。在 时,所有空间维度都可能保持不变,O9面也可能存在。I型弦论中的向形面就是时空填充O9面。 更一般地说,可考虑向形Op面,维度p的计算与Dp类似。O面与D膜可在相同结构中使用,并通常具有彼此相反的张力。

但与D膜不同的是,O面不是动态的。它们完全由对合作用定义,而非像D膜由弦边界条件定义。计算蝌蚪约束时,要同时考虑O面和D膜。

对合也作用于复结构(1,1)形式J

  • IIB型: 
  • IIA型: 

这样,空间参数化的 数就减少了。由于 是对合,所以特征值 。(1,1)形式基 ,维数 (由向形上同调的霍奇菱形定义)写作:每个基形式在 下都有确定的符号。由于模  定义,J 下则要如上进行变换,因此只有在 下与宇称正确的2形式基元素相配的模才能存活。于是, 会产生上同调的分裂: ,一般来说描述向形用的模数也少于描述构建向形的轨形所用的模数。[3]要注意的是,虽然向形投影出了一半的超对称生成子,但投影出的模数则因空间而异。有时 ,即所有(1-1)形式在向形投影下都有相同的宇称。这样,不同超对称内容进入模行为的方式是通过模经历的通量相关标量势,N=1情形异于N=2。

脚注

编辑
  1. ^ Lust; Reffert; Schulgin; Stieberger. Moduli Stabilization in Type IIB Orientifolds, Lust et al.. Nuclear Physics B. 2007, 766 (1): 68–149. Bibcode:2007NuPhB.766...68L. S2CID 119482115. arXiv:hep-th/0506090 . doi:10.1016/j.nuclphysb.2006.12.018. 
  2. ^ Aldazabal; Camara; Font; Ibanez. More Dual Fluxes and Moduli Fixing, Font et al.. Journal of High Energy Physics. 2006, 2006 (5): 070. Bibcode:2006JHEP...05..070A. S2CID 15824859. arXiv:hep-th/0602089 . doi:10.1088/1126-6708/2006/05/070. 
  3. ^ Matthias Ihl; Daniel Robbins; Timm Wrase. Toroidal Orientifolds in IIA with General NS-NS Fluxes. Journal of High Energy Physics. 2007, 2007 (8): 043. Bibcode:2007JHEP...08..043I. S2CID 15561489. arXiv:0705.3410 . doi:10.1088/1126-6708/2007/08/043. 

参考文献

编辑