忙碌的海狸
此条目没有列出任何参考或来源。 (2020年7月23日) |
在计算机科学中,忙碌的海狸(Busy Beaver)是一个在给定参数后,寻找可能产生的最大输出的可终止程序。忙碌的海狸游戏包括设计一个可终止的,只输出0或1的图灵机,让其在一条纸带上尽可能多的输出1.
包含两个状态的忙碌的海狸游戏有下面两条规则:
- 该图灵机包括除终止态以外的两个状态
- 纸带初始值都是0
玩家需要设计出可能输出最多1的状态转换表格,同时也要确保图灵机是会终止的。
能赢得n个状态的忙碌的海狸游戏的图灵机,称为第n个忙碌的海狸,或者用BB-n表示(BB是英文忙碌的海狸的缩写)。BB-n,是在所有n个状态的图灵机里面,可以输出最多的1的。比如BB-2,可能通过6次状态转换输出4个1。
忙碌的海狸游戏是由匈牙利数学家拉多·蒂博尔在1962年发表的论文《On Non-Computable Functions》中提出的。
无限旅馆的机器人
编辑假设有一排无限房间的旅馆,每个房间里面都装了一盏灯和一个开关。最初,所有房间的灯都是关的(状态0)。一个机器人管家从其中某一个房间开始工作。进入房间后,它的行为只能是选择开灯或关灯,然后移到相邻的左边或者右边房间去。
这个机器人可以处于若干个预先设定的状态中。在不同的状态下,它会根据房间灯的开关情况,选择不同的行为和下一步的状态。
一个状态的机器人
编辑- 在“工作”态下:
- 如果房间灯是关的,开灯,移动到左边的房间并转换到“停止”态
- 如果房间灯是开的,关灯,移动到左边的房间并转换到“停止”态
- 在“停止”态下(这个游戏必须有一个停止态,不计算在机器人状态中):机器人停止,游戏结束。
游戏开始后,这个“工作”态机器人进入某个房间后,开一盏灯,然后移到左边的房间并转换到“停止”态,游戏结束。我们可以验证,无论你如何设计机器人的行为(64种可能),在只有一种状态的约束下,机器人最多只能打开一盏灯,所以 。
两个状态的机器人
编辑- 在“惊恐”态下:
- 如果房间灯是关的,开灯并移动到左边的房间去
- 如果房间灯是开的,恢复到“正常”态
- 在“正常”态下:
- 如果房间灯是开的,关灯并移动到左边的房间去
- 其余情况,转变到“惊恐”态
- 在“停止”态下(这个游戏必须有一个停止态,不计算在两种状态中):机器人停止,游戏结束。
对于以上两种状态的机器人,如果它初始态是“惊恐”,从它进入某一个房间开放,它便会打开房间的灯然后移到左边的房间。然后继续开灯,向左移,无限循环下去。这样的状态设定是不符合忙碌的海狸必须可以终止的条件。同理,如果它的初始态是“正常”,它也会无限向左移,并不属于忙碌的海狸。
下面我们看另外一种两个状态的机器人。
- 在“1”态下:
- 如果房间灯是关的,开灯,移动到右边的房间,并转变到“2”态
- 如果房间灯是开的,保持,移动到左边的房间,并转变到“2”态
- 在“2”态下:
- 如果房间灯是关的,开灯,移动到左边的房间,并转变到“1”态
- 如果房间灯是开的,保持,移动到左边的房间,并转变到“H”态
- 在“H”态下:机器人停止,游戏结束。
这样的状态“1”机器人,从某个房间开始,可以进行6次移动,最终打开四盏灯(左边2个房间,开始的房间,和右边的一个房间),回到最左边的房间并停止游戏。2个状态的机器人,全部有 种行为设计,其实最多开灯的设计是4盏,所以 。
3个状态的机器人,可以通过14次移动,最多打开6盏灯 。
4个状态的机器人,可以通过107次移动,最多打开13盏灯, 。
4个更多状态的机器人,目前还不能计算出忙碌的海狸的函数值,比如目前我们猜测 ,但还不能确认。
相关的函数
编辑忙碌的海狸函数
编辑忙碌的海狸函数,又称为BB函数,或者Radó Sigma函数,记做 或者BB(n),是n个状态的忙碌的海狸图灵机的最大输出。这一个增长特别快的函数,是一个非常著名的不可计算函数。Radó证明了这个函数最终会超过全部的可计算函数。
还可以定义为集合 中最大的数,这个集合包括了n个状态的2色图灵机全部的输出。集合 的大小不超过 (这是n个状态的全部图灵机数量)。
更普遍的, 表示n个状态,m个颜色的忙碌的海狸图灵机。
方程值和下界
编辑Values of S(n, m) nm2-state 3-state 4-state 5-state 6-state 7-state 2-symbol 6 21 107 176870 47 > ×1036534 7.4 > 102*101010705353 18 3-symbol 38 ≥ 112334170342540 119 > ×1014072 1.0 ??? ??? ??? 4-symbol ≥ 932964 3 > ×1013036 5.2 ??? ??? ??? ??? 5-symbol > ×10704 1.9 ??? ??? ??? ??? ??? 6-symbol > ×109866 2.4 ??? ??? ??? ??? ???
Values of Σ(n, m) nm2-state 3-state 4-state 5-state 6-state 7-state 2-symbol 4 6 13 ? 4098 > ×1018267 3.5 > 10101010705353 18 3-symbol 9 ≥ 676383 374 > ×107036 1.3 ??? ??? ??? 4-symbol ≥ 2050 > ×106518 3.7 ??? ??? ??? ??? 5-symbol > ×10352 1.7 ??? ??? ??? ??? ??? 6-symbol > ×104933 1.9 ??? ??? ??? ??? ???
例子
编辑在下面的表格中,列代表了当前的状态,行代表了当前从纸带读取的标记。表格中的每一项有三个字母,分别表示向纸带写的标记,移动的方向和下一步的新的状态。终止态用H代表。
每个图灵机都从状态A开始,纸带无限长且初始值都是0。
结果指示: (启始位置 1, 结束位置 1)
1-状态, 2-标记 A 0 1RH 1 (not used)
结果: 0 0 1 0 0 (1 步, 一个 "1" )
2-状态, 2-标记 A B 0 1RB 1LA 1 1LB 1RH
结果: 0 0 1 1 1 1 0 0 (6 步, 四个 "1")
3-状态, 2-标记 A B C 0 1RB 0RC 1LC 1 1RH 1RB 1LA
结果: 0 0 1 1 1 1 1 1 0 0 (14 步, 六个 "1").
4-状态, 2-标记 A B C D 0 1RB 1LA 1RH 1RD 1 1LB 0LC 1LD 0RA
结果: 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 (107 步, 十三个 "1",见图)
5-状态, 2-标记 (目前最大估计) A B C D E 0 1RB 1RC 1RD 1LA 1RH 1 1LC 1RB 0LE 1LD 0LA
结果: 4098 个"1"中间隔 8191 个"0"。 47,176,870 步。
6-状态, 2-标记 (目前最大估计) A B C D E F 0 1RB 1RC 1LC 0LE 1LF 0RC 1 0LD 0RF 1LA 1RH 0RB 0RE
结果: 1 0 1 1 1 ... 1 1 1 ("10" 后面接着超过10↑↑15个"1")。超过10↑↑15 步。其中10↑↑15=1010..10是以10为底数的15层迭代幂次。