诺特第二定理
没有或很少条目链入本条目。 (2021年10月3日) |
在数学和理论物理学中,诺特第二定理把作用量泛函的对称性与微分方程系统联系起来。 [1][2]物理系统的作用量S是所谓的拉格朗日函数L的积分,从作用量出发,可以通过最小作用量原理确定系统的行为。
具体地,该定理是说,如果一个作用量有由 k 个任意函数与它最高到m阶的导数线性参数化的无穷小对称性的无限维李代数,则L的泛函导数满足一个包含k个方程的微分方程系统。
诺特第二定理可以用在规范理论中。规范理论是所有现代物理学场论的基本要素,例如通行的标准模型。
该定理以艾美·诺特的命名。
参见
编辑参考
编辑- Kosmann-Schwarzbach, Yvette. The Noether theorems: Invariance and conservation laws in the twentieth century. Sources and Studies in the History of Mathematics and Physical Sciences. Springer-Verlag. 2010. ISBN 978-0-387-87867-6.
- Olver, Peter. Applications of Lie groups to differential equations. Graduate Texts in Mathematics 107 2nd. Springer-Verlag. 1993. ISBN 0-387-95000-1.
- Sardanashvily, G. Noether's Theorems. Applications in Mechanics and Field Theory. Springer-Verlag. 2016. ISBN 978-94-6239-171-0.
延伸阅读
编辑- Noether, Emmy. Invariant Variation Problems. Transport Theory and Statistical Physics. 1971, 1 (3): 186–207. Bibcode:1971TTSP....1..186N. arXiv:physics/0503066 . doi:10.1080/00411457108231446.
- Fulp. Noether's variational theorem II and the BV formalism. arXiv:math/0204079 .
- Bashkirov, D.; Giachetta, G.; Mangiarotti, L.; Sardanashvily, G. The KT-BRST Complex of a Degenerate Lagrangian System. Letters in Mathematical Physics. 2008, 83 (3): 237. Bibcode:2008LMaPh..83..237B. arXiv:math-ph/0702097 . doi:10.1007/s11005-008-0226-y.
- Montesinos, Merced; Gonzalez, Diego; Celada, Mariano; Diaz, Bogar. Reformulation of the symmetries of first-order general relativity. Classical and Quantum Gravity. 2017, 34 (20): 205002. Bibcode:2017CQGra..34t5002M. arXiv:1704.04248 . doi:10.1088/1361-6382/aa89f3.
- Montesinos, Merced; Gonzalez, Diego; Celada, Mariano. The gauge symmetries of first-order general relativity with matter fields. Classical and Quantum Gravity. 2018, 35 (20): 205005. Bibcode:2018CQGra..35t5005M. arXiv:1809.10729 . doi:10.1088/1361-6382/aae10d.
- ^ Noether, Emmy, Invariante Variationsprobleme, Nachr. D. König. Gesellsch. D. Wiss. Zu Göttingen, Math-phys. Klasse, 1918, 1918: 235–257 [2021-09-29], (原始内容存档于2022-03-16)
- ^ Noether, Emmy. Invariant variation problems. Transport Theory and Statistical Physics. 1971-01, 1 (3): 186–207 [2021-09-29]. ISSN 0041-1450. doi:10.1080/00411457108231446. (原始内容存档于2022-07-15) (英语).