諾特第二定理
沒有或很少條目連入本條目。 (2021年10月3日) |
在數學和理論物理學中,諾特第二定理把作用量泛函的對稱性與微分方程系統聯繫起來。 [1][2]物理系統的作用量S是所謂的拉格朗日函數L的積分,從作用量出發,可以通過最小作用量原理確定系統的行為。
具體地,該定理是說,如果一個作用量有由 k 個任意函數與它最高到m階的導數線性參數化的無窮小對稱性的無限維李代數,則L的泛函導數滿足一個包含k個方程的微分方程系統。
諾特第二定理可以用在規範理論中。規範理論是所有現代物理學場論的基本要素,例如通行的標準模型。
該定理以艾美·諾特的命名。
參見
編輯參考
編輯- Kosmann-Schwarzbach, Yvette. The Noether theorems: Invariance and conservation laws in the twentieth century. Sources and Studies in the History of Mathematics and Physical Sciences. Springer-Verlag. 2010. ISBN 978-0-387-87867-6.
- Olver, Peter. Applications of Lie groups to differential equations. Graduate Texts in Mathematics 107 2nd. Springer-Verlag. 1993. ISBN 0-387-95000-1.
- Sardanashvily, G. Noether's Theorems. Applications in Mechanics and Field Theory. Springer-Verlag. 2016. ISBN 978-94-6239-171-0.
延伸閲讀
編輯- Noether, Emmy. Invariant Variation Problems. Transport Theory and Statistical Physics. 1971, 1 (3): 186–207. Bibcode:1971TTSP....1..186N. arXiv:physics/0503066 . doi:10.1080/00411457108231446.
- Fulp. Noether's variational theorem II and the BV formalism. arXiv:math/0204079 .
- Bashkirov, D.; Giachetta, G.; Mangiarotti, L.; Sardanashvily, G. The KT-BRST Complex of a Degenerate Lagrangian System. Letters in Mathematical Physics. 2008, 83 (3): 237. Bibcode:2008LMaPh..83..237B. arXiv:math-ph/0702097 . doi:10.1007/s11005-008-0226-y.
- Montesinos, Merced; Gonzalez, Diego; Celada, Mariano; Diaz, Bogar. Reformulation of the symmetries of first-order general relativity. Classical and Quantum Gravity. 2017, 34 (20): 205002. Bibcode:2017CQGra..34t5002M. arXiv:1704.04248 . doi:10.1088/1361-6382/aa89f3.
- Montesinos, Merced; Gonzalez, Diego; Celada, Mariano. The gauge symmetries of first-order general relativity with matter fields. Classical and Quantum Gravity. 2018, 35 (20): 205005. Bibcode:2018CQGra..35t5005M. arXiv:1809.10729 . doi:10.1088/1361-6382/aae10d.
- ^ Noether, Emmy, Invariante Variationsprobleme, Nachr. D. König. Gesellsch. D. Wiss. Zu Göttingen, Math-phys. Klasse, 1918, 1918: 235–257 [2021-09-29], (原始內容存檔於2022-03-16)
- ^ Noether, Emmy. Invariant variation problems. Transport Theory and Statistical Physics. 1971-01, 1 (3): 186–207 [2021-09-29]. ISSN 0041-1450. doi:10.1080/00411457108231446. (原始內容存檔於2022-07-15) (英語).