微生物誘發的沉積構造

微生物誘發的沉積構造(MISS)又稱為「席底構造」是由微生物與沉積物及侵蝕、沉積和搬運等物理因素相互作用形成的主要沉積構造[2][3][4][5],即微生物通過生命活動在沉積物表面形成微生物席,使鬆散的沉積物富有黏結性而抗水流改造形成的一系列特殊沉積構造。當微生物席(可能由細菌真菌原生動物古菌藻類等構成)保存在沉積地質記錄中時,通常會形成這些結構[6]

這種起皺的「象皮」紋理是由非疊層石微生物席形成的特徵。該圖片顯示了瑞典伯格斯維克地層的位置,在那裡,該紋理首次被確定是微生物席的證據[1]

大型和微觀微生物誘發沉積構造主要有17種[7],其中化石記錄中最豐富的是皺飾結構 [8]和微生物席碎屑,其他的類型包括S型彎曲構造、多邊形振盪裂縫、多向變餘波痕[9]、剝蝕殘餘和坑穴或氣穹窿。

儘管這些構造直到最近才被命名和系統描述,但一些早期研究人員就已提出了沉積物和沉積岩中的微生物與獨特構造間的關係[1][10][11][12]。在34.8億年前太古宙所形成地層中發現的「席底構造」[13][14] ,可能是地球上最古老的完整化石[7][13][14]。在埃迪卡拉紀時期,它們通常與埃迪卡拉生物群化石的保存有關。此後,由於農業文明的影響,他們的分布範圍隨之縮減[7][15][16][17]

現已提出了許多標準來識別真正的生物結構,並將其與地質過程中可能產生的類似外觀特徵區分開來。這些與岩石所經歷的變質程度以及它們相對於海平面的地層位置、沉積環境、古代水壓,還有自身質地等均有關係[6]

在最近的幾本書,對微生物席誘發沉積構造的個別研究進行了總結和說明,包括《矽質碎屑岩記錄中保存的微生物席特徵圖集》[18]和《矽質碎屑沉積體系中隨時間推移的微生物席》[19]

根據對火星的一項研究,「好奇號」火星車探訪的黃刀灣吉萊斯皮湖段,可能存在類似地球上席底構造的砂岩層[20]

另請查看

編輯

參考文獻

編輯
  1. ^ 1.0 1.1 Manten, A. Some problematic shallow-marine structures. Marine Geology. 1966, 4 (3): 227–669. Bibcode:1966MGeol...4..227M. doi:10.1016/0025-3227(66)90023-5. hdl:1874/16526 . 
  2. ^ Noffke, N.; Gerdes, G.; Klenke, T.; Krumbein, W. E. Microbially Induced Sedimentary Structures: A New Category within the Classification of Primary Sedimentary Structures. Journal of Sedimentary Research. 2001, 71 (5): 649. Bibcode:2001JSedR..71..649N. doi:10.1306/2DC4095D-0E47-11D7-8643000102C1865D. 
  3. ^ Noffke, N., 2003, Microbially induced sedimentary structures, in Middleton, G.V., ed., Encyclopedia of Sediments and Sedimentary Rocks: Boston, Kluwer Academic Publishers, p. 439-440.
  4. ^ Noffke, N. Turbulent lifestyle: Microbial mats on Earth's sandy beaches—Today and 3 billion years ago. GSA Today. 2008, 18 (10): 4–9. doi:10.1130/GSATG7A.1 . 
  5. ^ Noffke, N.; Krumbein, W. E. A quantitative approach to sedimentary surface structures contoured by the interplay of microbial colonization and physical dynamics. Sedimentology. 1999, 46 (3): 417. Bibcode:1999Sedim..46..417N. doi:10.1046/j.1365-3091.1999.00218.x. 
  6. ^ 6.0 6.1 Noffke, N. The criteria for the biogeneicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits. Earth-Science Reviews. 2009, 96 (3): 173–180. Bibcode:2009ESRv...96..173N. doi:10.1016/j.earscirev.2008.08.002. 
  7. ^ 7.0 7.1 7.2 Noffke, N., 2010, Microbial Mats in Sandy Deposits from the Archean Era to Today: Springer Verlag, Heidelberg, 193 p.
  8. ^ Hagadorn, J.W.; Bottjer, D.J. Wrinkle structures: Microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic-Phanerozoic transition. Geology. 1999, 25 (11): 1047–1050. doi:10.1130/0091-7613(1997)025<1047:WSMMSS>2.3.CO;2. 
  9. ^ Noffke, N. Multidirected ripple marks arising from bacterial stabilization counteracting physical rework in modern sandy deposits (Mellum Island, southern North Sea). Geology. 1998, 26 (10): 879–882. doi:10.1130/0091-7613(1998)026<0879:mrmrfb>2.3.co;2. 
  10. ^ Riding, R. The term stromatolite: towards an essential definition. Lethaia. 2007, 32 (4): 321–330. doi:10.1111/j.1502-3931.1999.tb00550.x. (原始內容存檔於2015-05-02). 
  11. ^ Pratt, B.R., 2003, Stromatolites, in Middleton, G.V., ed., Encyclopedia of Sediments and Sedimentary Rocks: Boston, Kluwer Academic Press, p. 688-690.
  12. ^ Gerdes, G. and Krumbein, 1987, Biolaminated deposits: Springer, Heidelberg, 169 p.
  13. ^ 13.0 13.1 Borenstein, Seth. Oldest fossil found: Meet your microbial mom. AP News. 13 November 2013 [15 November 2013]. (原始內容存檔於2015-06-29). 
  14. ^ 14.0 14.1 Noffke, Nora; Christian, Christian; Wacey, David; Hazen, Robert M. Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia. Astrobiology. 8 November 2013, 13 (12): 1103–24. Bibcode:2013AsBio..13.1103N. PMC 3870916 . PMID 24205812. doi:10.1089/ast.2013.1030. 
  15. ^ Noffke, N.; Paterson, D. Microbial interactions with physical sediment dynamics, and their significance for the interpretation of Earth's biological history. Geobiology. 2007, 6 (1): 1–4. PMID 18380881. doi:10.1111/j.1472-4669.2007.00132.x. 
  16. ^ Noffke, N.; Awramik, S. M. Stromatolites and MISS—Differences between relatives. GSA Today. 2013, 23 (9): 4. doi:10.1130/GSATG187A.1. 
  17. ^ Callow, R. H. T.; Brasier, M. D. Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: Implications for Ediacaran taphonomic models. Earth-Science Reviews. 2009, 96 (3): 207–219. Bibcode:2009ESRv...96..207C. CiteSeerX 10.1.1.426.2250 . doi:10.1016/j.earscirev.2009.07.002. 
  18. ^ Schieber et al., eds., 2007, Atlas of microbial mat features preserved in the siliciclastic rock record: Elsevier, 324 p.
  19. ^ Noffke, N. and Chaftez, H., 2012, Microbial Mats in Siliciclastic Depositional Systems Through Time: SEPM Special Publication 101.
  20. ^ Nora, Noffke. Ancient Sedimentary Structures in the <3.7 Ga Gillespie Lake Member, Mars, That Resemble Macroscopic Morphology, Spatial Associations, and Temporal Succession in Terrestrial Microbialites. Astrobiology. February 14, 2015, 15 (2): 169–192. Bibcode:2015AsBio..15..169N. PMID 25495393. doi:10.1089/ast.2014.1218.