交換代數中,準素分解將一個交換環理想(或的子模)唯一地表成準素理想(或準素子模)之交。這是算術基本定理的推廣,能用以處理代數幾何中的情況。

陳述

編輯

  為交換諾特環  為有限生成之  -模。對任一子模  ,存在有限多個準素子模   使得

 

事實上,可以要求此分解是最小的(即:無法省去任何  ),且諸準素子模   對應到的素理想彼此相異。滿足上述條件的準素分解是唯一確定的。

最常見的情形是取  ,並取   為一理想。任取一準素分解  ,這些   中的極小者稱為  孤立素理想,否則稱為鑲嵌素理想;孤立素理想是   的一組不變量。

幾何意義

編輯

在幾何上,  的孤立素理想對應到仿射概形   的閉子集   之不可約成份。

歷史

編輯

伊曼紐·拉斯克在1905年證明了 多項式環的情形。埃米·諾特在1921年證明上述的推廣版本。職是之故,準素分解的存在性也被稱為拉斯克-諾特定理

文獻

編輯
  • M.F. Atiyah, I.G. Macdonald, Introduction to commutative algebra , Addison-Wesley (1969)
  • O. Zariski, P. Samuel, Commutative algebra, Volume 1 and 2, Springer (1975)
  • N. Bourbaki, Elements of mathematics. Commutative algebra , Addison-Wesley (1972)
  • V. T. Markov, Primary Decomposition, Hazewinkel, Michiel (編), 数学百科全书, Springer, 2001, ISBN 978-1-55608-010-4