地理统计
地理统计(英語:geostatistics,或译作地统计学、地学统计、地质统计学等)是统计学中关注空间或时空数据集的一个分支,最初是从采矿作业中预测矿石品位的概率分布而发展出来的[1],目前已应用于石油地质学、水文地质学、水文学、气象学、海洋学、地球化学、地质冶金学、地理学、林业、环境控制、景观生态学、土壤学,以及农业(尤其是精准农业)等多个学科。地理统计应用于地理学的各个分支,特别是涉及疾病传播(流行病学)、商业和军事规划(物流)的实践,还应用于建设高效的空间网络。地理统计相关算法已融入地理信息系统(GIS)等许多应用场景。
背景
编辑地理统计与插值方法密切相关,但远不止简单的插值问题。地理统计技术依赖基于随机函数(或随机变量)理论的统计模型来模拟与空间估计和模拟相关的不确定性。
许多更简单的插值方法/算法,例如反距离加权、双线性插值和最近邻插值,在地统计学问世前就已经普及。[2]但地统计学超越了插值问题,将位于未知位置的要研究的现象视作一组相关的随机变量。
令Z(x)为特定位置x处的感兴趣变量的值。这个值是未知的(例如温度、降雨量、测压水位、地质相等)。尽管可以前往位置x测量该数值,但地统计学认为该值在尚未测量时是随机的。然而,Z(x)又不完全随机,可以用累积分布函数(CDF)定义,而该函数依赖于关于Z(x)值的某些已知信息(information):
通常,如果靠近x的某些位置(或位于x的邻域中)的Z的值已知,则可以通过该邻域来约束Z(x)的累积分布函数:如果假设空间是高度连续的(空间自相关),则Z(x)必与附近的值相似。相反,若空间连续性很弱,则Z(x)可以取任何值。随机变量的空间连续性可以用空间连续性模型来描述;它可以是基于变差函数的地统计学中的参数形式的模型,也可以是非参数形式的,如多点模拟[3]或伪遗传方法。
研究者可将单个空间模型应用在整个定义域上,借此假设Z是一个平稳过程。它表示相同的统计属性适用于整个定义域。许多种地理统计方法提供了将这些平稳性假设的条件放宽的方法。
该框架中,可以区分两个建模目标:
- 估计Z(x)的值,通常使用累积分布函数f(z,x)的期望值、中位數或众数。其通常表现为估计问题。
- 考虑每个位置上的每种可能结果,从整个概率密度函数f(z,x)中采样。其方法通常是建立几个替代性的Z,称为实现(realization)。考虑在N维网格节点(或像素)中离散化的域。每个实现都是完整N维联合分布函数的样本
- 该方法承认插值问题存在多种解法。每个实现都被视作真实变量可能取值的情形。然后,所有与之相关的工作流都在考虑实现的集成,从而考虑允许概率预测的预测集成。因此,地统计学常用于在求解逆問題时生成或更新空间模型。[4][5]
地理统计估计和多重实现方法都存在许多方法。一些参考书提供了该学科的全面概述。[6][2][7][8][9][10][11][12][13][14][15]
方法
编辑估计
编辑克里金法
编辑克里金法(Kriging)是一类地统计技术,用于在缺少观测值的位置,根据在附近位置的观察值插入随机场的值(例如高程z)。
贝叶斯估计
编辑贝叶斯推断是一种统计推断方法,它使用贝叶斯定理在获得更多证据或信息时更新概率模型。贝叶斯推断在地统计学中日益重要。[16]贝叶斯估计通过空间过程实现克里金法,最常见的是高斯过程,并使用贝叶斯定理更新该过程以计算其后验概率。另有高维贝叶斯地统计学。[17]
有限差分法
编辑考虑到概率守恒原理,循环差分方程(有限差分方程)可与格网相结合,计算概率,对地质构造的不确定性进行量化。此过程是马尔可夫链和贝叶斯模型的数值替代方法。[18]
模拟
编辑定义和工具
编辑参见
编辑参考文献
编辑- ^ Krige, Danie G. (1951). "A statistical approach to some basic mine valuation problems on the Witwatersrand". J. of the Chem., Metal. and Mining Soc. of South Africa 52 (6): 119–139
- ^ 2.0 2.1 Isaaks, E. H. and Srivastava, R. M. (1989), An Introduction to Applied Geostatistics, Oxford University Press, New York, USA.
- ^ Mariethoz, Gregoire, Caers, Jef (2014). Multiple-point geostatistics: modeling with training images. Wiley-Blackwell, Chichester, UK, 364 p.
- ^ Hansen, T.M., Journel, A.G., Tarantola, A. and Mosegaard, K. (2006). "Linear inverse Gaussian theory and geostatistics", Geophysics 71
- ^ Kitanidis, P.K. and Vomvoris, E.G. (1983). "A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations", Water Resources Research 19(3):677-690
- ^ Remy, N., et al. (2009), Applied Geostatistics with SGeMS: A User's Guide, 284 pp., Cambridge University Press, Cambridge.
- ^ Deutsch, C.V., Journel, A.G, (1997). GSLIB: Geostatistical Software Library and User's Guide (Applied Geostatistics Series), Second Edition, Oxford University Press, 369 pp., http://www.gslib.com/ (页面存档备份,存于互联网档案馆)
- ^ Chilès, J.-P., and P. Delfiner (1999), Geostatistics - Modeling Spatial Uncertainty, John Wiley & Sons, Inc., New York, USA.
- ^ Lantuéjoul, C. (2002), Geostatistical simulation: Models and algorithms, 232 pp., Springer, Berlin.
- ^ Journel, A. G. and Huijbregts, C.J. (1978) Mining Geostatistics, Academic Press. ISBN 0-12-391050-1
- ^ Kitanidis, P.K. (1997) Introduction to Geostatistics: Applications in Hydrogeology, Cambridge University Press.
- ^ Wackernagel, H. (2003). Multivariate geostatistics, Third edition, Springer-Verlag, Berlin, 387 pp.
- ^ Pyrcz, M. J. and Deutsch, C.V., (2014). Geostatistical Reservoir Modeling, 2nd Edition, Oxford University Press, 448 pp.
- ^ Tahmasebi, P., Hezarkhani, A., Sahimi, M., 2012, Multiple-point geostatistical modeling based on the cross-correlation functions, Computational Geosciences, 16(3):779-79742,
- ^ Schnetzler, Manu. Statios - WinGslib. [2023-05-14]. (原始内容存档于2015-05-11).
- ^ Banerjee S., Carlin B.P., and Gelfand A.E. (2014). Hierarchical Modeling and Analysis for Spatial Data, Second Edition. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. ISBN 9781439819173
- ^ Banerjee, Sudipto. High-Dimensional Bayesian Geostatistics. Bayesian Anal. 12 (2017), no. 2, 583--614. doi:10.1214/17-BA1056R. https://projecteuclid.org/euclid.ba/1494921642 (页面存档备份,存于互联网档案馆)
- ^ Cardenas, IC. A two-dimensional approach to quantify stratigraphic uncertainty from borehole data using non-homogeneous random fields. Engineering Geology. 2023. doi:10.1016/j.enggeo.2023.107001 .
- Armstrong, M and Champigny, N, 1988, A Study on Kriging Small Blocks, CIM Bulletin, Vol 82, No 923
- Armstrong, M, 1992, Freedom of Speech? De Geeostatisticis, July, No 14
- Champigny, N, 1992, Geostatistics: A tool that works, The Northern Miner, May 18
- Clark I, 1979, Practical Geostatistics (页面存档备份,存于互联网档案馆), Applied Science Publishers, London
- David, M, 1977, Geostatistical Ore Reserve Estimation, Elsevier Scientific Publishing Company, Amsterdam
- Hald, A, 1952, Statistical Theory with Engineering Applications, John Wiley & Sons, New York
- Honarkhah, Mehrdad; Caers, Jef. Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling. Mathematical Geosciences. 2010, 42 (5): 487–517. doi:10.1007/s11004-010-9276-7. (best paper award IAMG 09)
- ISO/DIS 11648-1 Statistical aspects of sampling from bulk materials-Part1: General principles
- Lipschutz, S, 1968, Theory and Problems of Probability, McCraw-Hill Book Company, New York.
- Matheron, G. 1962. Traité de géostatistique appliquée. Tome 1, Editions Technip, Paris, 334 pp.
- Matheron, G. 1989. Estimating and choosing, Springer-Verlag, Berlin.
- McGrew, J. Chapman, & Monroe, Charles B., 2000. An introduction to statistical problem solving in geography, second edition, McGraw-Hill, New York.
- Merks, J W, 1992, Geostatistics or voodoo science, The Northern Miner, May 18
- Merks, J W, Abuse of statistics, CIM Bulletin, January 1993, Vol 86, No 966
- Myers, Donald E.; "What Is Geostatistics? (页面存档备份,存于互联网档案馆)
- Philip, G M and Watson, D F, 1986, Matheronian Geostatistics; Quo Vadis?, Mathematical Geology, Vol 18, No 1
- Pyrcz, M.J. and Deutsch, C.V., 2014, Geostatistical Reservoir Modeling, 2nd Edition, Oxford University Press, New York, p. 448
- Sharov, A: Quantitative Population Ecology, 1996, https://web.archive.org/web/20020605050231/http://www.ento.vt.edu/~sharov/PopEcol/popecol.html
- Shine, J.A., Wakefield, G.I.: A comparison of supervised imagery classification using analyst-chosen and geostatistically-chosen training sets, 1999, https://web.archive.org/web/20020424165227/http://www.geovista.psu.edu/sites/geocomp99/Gc99/044/gc_044.htm
- Strahler, A. H., and Strahler A., 2006, Introducing Physical Geography, 4th Ed., Wiley.
- Tahmasebi, P., Hezarkhani, A., Sahimi, M., 2012, Multiple-point geostatistical modeling based on the cross-correlation functions, Computational Geosciences, 16(3):779-79742.
- Volk, W, 1980, Applied Statistics for Engineers, Krieger Publishing Company, Huntington, New York.
外部链接
编辑- GeoENVia (页面存档备份,存于互联网档案馆) promotes the use of geostatistical methods in environmental applications, and organizes bi-annual conferences.
- [1] (页面存档备份,存于互联网档案馆), a resource on the internet about geostatistics and spatial statistics
- On-Line Library that chronicles Matheron's journey from classical statistics to the new science of geostatistics (页面存档备份,存于互联网档案馆)
- [2] (页面存档备份,存于互联网档案馆)
- https://web.archive.org/web/20040326205028/http://geostatscam.com/ Is the site of Jan W. Merks, who claims that geostatistics is "voodoo science" and a "scientific fraud"
- [3] (页面存档备份,存于互联网档案馆) It is a group for exchanging of ideas and discussion on multiple point geostatistics (MPS).