耳蜗
內耳 |
內耳構造 |
---|
耳蜗(英語:cochlea)是内耳的一个解剖结构,它和前庭系统一起组成内耳骨迷路,即内耳的核心结构[1][2][3]。耳蜗的名称来源于其形状与蜗牛壳的相似性,英语 cochlea,即拉丁语“蜗牛壳”之义。耳蜗是外周听觉系统的组成部分,连接着耳蜗神经[4]。耳蜗的核心部分为柯蒂氏器,是听觉传导器官,负责将来自中耳的声音信号转换为相应的神经电信号,交送脑的中枢听觉系统接受进一步处理,最终实现听觉[5]。耳蜗的病变和多种听觉障碍密切相关。
耳蜗的解剖位置
编辑耳蜗位于颞骨深处,毗邻中耳听小骨以及脑干,是内耳骨迷路的组成部分。耳蜗的几何对称轴,称为耳蜗轴大致处在水平面内,与颞骨表面垂直。
耳蜗的解剖结构
编辑人类的耳蜗形似蜗牛壳,由底端(basal)至顶端(apical)螺旋环绕二又八分之五周,展开长度约为35 mm。
耳蜗是一个骨质结构,由三个内部充满淋巴液的空腔组成,这三个空腔由上到下依次为[6]:
前庭阶在底端中止于卵圆窗,是镫骨施力的部位;鼓阶在底端中止于圆窗,毗邻鼓室,是声压释放的窗口。
赖斯纳氏膜(Reissner's membrane)分隔前庭阶和蜗管,基底膜(basilar membrane)分隔蜗管和鼓阶。基底膜是膜螺旋板中非常薄的纤维层,不同于属胞外基质的基膜(basement membrane)。听觉转导器官柯蒂氏器坐落于基底膜之上、蜗管内部。前庭阶和鼓阶在蜗孔(helicotrema)相通。
听神经的纤维通过基底膜与内毛细胞和外毛细胞形成突触连接,其细胞体位于在耳蜗中心部的螺旋神经节内[7]。
耳蜗的比较解剖学
编辑耳蜗的蜗牛形状只在哺乳类动物存在,一些其他动物的耳蜗虽然不具有螺旋形状(例如鸟类的线形耳蜗),但是仍然称为“耳蜗”。不同哺乳类动物的耳蜗长度和螺旋周数亦有区别。该区别反映了不同物种听觉频率范围的区别。
柯蒂氏器和听觉转导
编辑柯蒂氏器是听觉转导环节。右图所示为柯蒂氏器的主要解剖结构。
基底膜和频率拓扑的起源
编辑基底膜是一个贯穿耳蜗底部自顶部的膜状结构。外淋巴的机械振动,在基底膜形成一个行波,行波在基底膜的不同部位形成不同的共振幅度。自底部至顶部,基底膜的横向宽度递增、机械张力亦递增,硬度递减。这两个趋势的综合作用因素是共振频率(亦称为特性频率(characteristic frequency)或最佳频率(best frequency))自底部至顶部的递减。在人类,该共振频率的范围约为20-20000 Hz,即人类的正常听觉频率范围。
基底膜上的距卵圆窗距离与共振频率与间的关系称为频率拓扑(tonotopy)。基底膜的频率拓扑造成了毛细胞阵列和听神经阵列中的频率拓扑,也是上至大脑的听觉皮层的整个听觉通路的频率拓扑的根本起源。由于听觉系统具有频率拓扑性质,其工作原理形似信号处理中的傅立叶分析或某种形式的小波分析。当然在听觉通路更高级的部分,频率拓扑逐渐模糊,处理的复杂性亦非此类工程方法所能概括。
毛细胞
编辑毛细胞规则地分布于基底膜之上,自耳蜗底端至顶端的全长范围内形成平行的四列。其中靠近耳蜗中心的一列称为内毛细胞(inner hair cell);远离中心的三列称为外毛细胞(outer hair cell)。[8]
两类毛细胞的顶部都有若干列静纤毛(stereocilia),同时有少量动纤毛(kinocilia,只在发育中的毛细胞存在)。当外淋巴在机械震动下带动盖膜和基底膜形成相对剪切运动时,纤毛发生摇摆。纤毛的摇摆通过一些尚未研究透彻的机制,导致纤毛顶部附近的离子通道的开闭,形成跨膜电流和感受器电位。而毛细胞死后亦無法再生,致人一生的聽覺能力不斷減退。
内毛细胞是感受器细胞,与若干个听神经纤维形成突触连接。负责将机械振动转化为与之相连的听神经纤维的动作电位。外毛细胞与来自上橄欖複合體的传出神经以及另一类型的传入神经(称为II型传入纤维)形成突触,其生理功能尚不完全清楚,一般认为与增强听神经的高度频率选择性、耳蜗的调节和自我保护机制有关。
支持细胞
编辑柯蒂氏器除了毛细胞,还有多种类型的支持细胞,例如Deiter细胞等。这些细胞的功能可能与柯蒂氏器的机械特性、发育和代谢等机制有关。
與平衡感無關聯
编辑耳蝸和前庭系統一起構成了內耳迷路,而負責感知平衡感的是半規管系統及耳石器官,雖然兩者和耳蝸也是位於內耳的結構,但耳蝸和人體的平衡能力並無關聯,惟發生病變感染時還會同時影響兩者的運作,這樣的聽覺與平衡的合併沒有任何意義,單純只是擁有感知纖毛的構造同時負責這些工作而已,不過對科學家來說有趣的是,這些特徵可以作為生物親緣關係的依據,因為這些構造是生物自然進化的結果,而且該進化史頗為漫長,起源於約白堊紀時,也因此不單是人類的祖先,在大多數高等脊椎生物上(如鳥類)也有具備相似的構造,而在魚類與青蛙等則是較原始的構造組成。
参见
编辑参考资料
编辑- ^ Bony Labyrinth - an overview. Science Direct. [2021-02-28] (英语).
- ^ Vestibular system. Encyclopedia Britannica. [2021-02-28]. (原始内容存档于2020-10-26) (英语).
- ^ The Antatomy of Hearing and Balance. MedicineNet. [2021-02-28]. (原始内容存档于2021-04-20) (英语).
- ^ 4.0 4.1 Cochlear Nerve. Science Direct. [2021-02-28].
- ^ White, Hunter J.; Helwany, Muhammad; Peterson, Diana C. Anatomy, Head and Neck, Ear Organ of Corti. StatPearls. Treasure Island (FL): StatPearls Publishing. 2021 [2021-03-13]. PMID 30855919. (原始内容存档于2021-12-14).
- ^ Casale, Jarett; Kandle, Patricia F.; Murray, Ian; Murr, Najib. Physiology, Cochlear Function. StatPearls. Treasure Island (FL): StatPearls Publishing. 2021 [2021-03-13]. PMID 30285378. (原始内容存档于2020-11-11).
- ^ Nayagam, Bryony A; Muniak, Michael A; Ryugo, David K. The spiral ganglion: connecting the peripheral and central auditory systems. Hearing research. 2011-8, 278 (1-2): 2–20. ISSN 0378-5955. PMC 3152679 . PMID 21530629. doi:10.1016/j.heares.2011.04.003.
- ^ Purves, Dale; Augustine, George J.; Fitzpatrick, David; Katz, Lawrence C.; LaMantia, Anthony-Samuel; McNamara, James O.; Williams, S. Mark. Two Kinds of Hair Cells in the Cochlea. Neuroscience. 2nd edition. 2001 [2021-03-13]. (原始内容存档于2021-10-15) (英语).
外部連結
编辑- 耳蝸(cochlea) (页面存档备份,存于互联网档案馆)