蛇引理
敘述
编辑使得每一橫列均為正合序列。此時存在一個聯繫 的核與上核的正合序列:
引蛇出洞
编辑為了理解蛇引理的由來,觀察下圖:
並注意到:引理給出的正合序列可在此圖中畫成倒S狀的蛇形。
構造連接同態
编辑核間的同態與上核間的同態很容易構造,它們由該圖的交換性自然導出,正合性也可以直接代定義驗證。重點在於連接同態 及序列在該處的正合性。
對於模範疇的情形,同態 可如是構造:
選定 ,並視之為 的元素;由於 是滿射,存在 滿足 。由圖的交換性,我們有
- (因為 )
於是 。由於底部的橫列正合,存在 使得 。置 。今須驗證 是明確定義的,即 不依賴 之選取;此外尚須驗證它是個同態,及序列的正合性。
一旦完成以上幾點驗證,即證明了此引理在模範疇的情形。對一般情形,可利用核與上核的泛性;此外也能使用Mitchell嵌入定理,此定理斷言任一阿貝爾範疇都能遷入某個環 的 -模範疇。
函子性
编辑在應用上,我們常常需要長正合列的「函子性」或曰「自然性」(就自然變換意義言之);各種建構的函子性也是同調代數的基本哲學。此函子性可由蛇引理的函子性導出。
設交換圖
的橫列均為正合,則可利用蛇引理兩次,一次在「前」一次在「後」,產生兩條長正合序列;它們經由以下交換圖相連繫:
文獻
编辑- Serge Lang, Algebra (2002), Graduate Texts in Mathematics 211, Springer. ISBN 0-387-95385-X