在数学中,迪尼定理叙述如下:设 X 是一个紧致拓扑空间X 上的一个单调递增连续实值函数列(即使得对任意 nX 中的任意 x 都有)。如果这个函数列逐点收敛到一个连续的函数 f ,那么这个函数列一致收敛f 。这个定理以意大利数学家乌利塞·迪尼命名。

对于单调递减的函数列,定理同样成立。这个定理是少数的由逐点收敛可推出一致收敛的例子之一,原因是由单调性这个更强的条件。

注意定理中的 f 一定要是连续的,否则可以构造反例。比如说在区间 [0,1] 上的函数列 {xn}。这是一个单调递减函数,逐点收敛到函数 f :当 x 属于 [0,1) 时f(x) 等于 0 ,f(1) 等于 1。但这个函数列不是一致收敛的,因为 f 不连续。

证明

编辑

我们对单调递增的函数列作证明:对于任意   ,对每个 n ,设   再设 为使得  。显然每个  都连续,于是每个  都是开集(在拓扑空间中,连续函数被定义为使得开集的原像都是开集的函数,可以证明这种定义和一般的连续定义是等价的,而 是正实数集中的开集)。函数列{ } 是单调递减的,因此   的子集。又由于   逐点收敛f ,所有( ) 的并集X 的一个开覆盖。但是 X 是一个紧集于是存在正整数 N 使得 。因此对所有  ,对所有的  ,都有  ,于是{ } 一致收敛f

参见

编辑