对合矩阵

逆为自身的矩阵

数学上, 对合矩阵是指逆为自身的矩阵,即,称矩阵是一个对合矩阵当且仅当。对合矩阵是单位矩阵方根。 [1]

如果 ,则2×2实矩阵    是对合矩阵。[2]

三类基本矩阵中有一种是对合矩阵,即行交换的基本矩阵。 在特殊情况下,另一类的基本矩阵,即表示对行或列乘以 −1 的矩阵也是对合矩阵;实际上这是符号矩阵的一个特例——所有符号矩阵均是对合的。

下面是一些对合矩阵的简单例子。

 

这里

  是单位矩阵 (显然对合);
  是交换过一对行的单位矩阵;
 符号矩阵

显然,任何由对称矩阵构成的块-对角阵 构成的矩阵也是对合矩阵。

对称性

编辑

一个对称的对合矩阵也是一个正交矩阵,并因此表示一个保距变换 (保持欧几里德距离的线性变换)。反之,每个正交对合矩阵均是对称的。[3] 一个特别的例子是,每个反射矩阵均是对合的。

性质

编辑

任何域上对合矩阵的行列式是±1.[4]

如果   是一n × n 矩阵,则A是对合的当且仅当½(A + I)是 幂等的。 这一关系给出了对合矩阵和幂等矩阵之间的双射

如果   实数域上的矩阵代数)上的矩阵,则由   产生的子代数 {x I + y A: x、y ∈ℝ} 与双曲复数同构。

如果    两个对合矩阵可交换,则   也是对合的。

如果   是对合矩阵则 A 的任意自然数次幂均是对合的。 事实上,   在   是奇数时等于  ,在   是偶数时等于  

另见

编辑
  • 仿射对合

参考文献

编辑
  1. ^ Higham, Nicholas J., 6.11 Involutory Matrices, Functions of Matrices: Theory and Computation, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM): 165–166, 2008 [2017-11-29], ISBN 978-0-89871-646-7, MR 2396439, doi:10.1137/1.9780898717778, (原始内容存档于2020-07-15) .
  2. ^ Peter Lancaster & Miron Tismenetsky (1985) The Theory of Matrices, 2nd edition, pp 12,13 Academic Press ISBN 0-12-435560-9
  3. ^ Govaerts, Willy J. F., Numerical methods for bifurcations of dynamical equilibria, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM): 292, 2000 [2017-11-29], ISBN 0-89871-442-7, MR 1736704, doi:10.1137/1.9780898719543, (原始内容存档于2020-08-02) ; ; .
  4. ^ Bernstein, Dennis S., 3.15 Facts on Involutory Matrices, Matrix Mathematics 2nd, Princeton, NJ: Princeton University Press: 230–231, 2009 [2017-11-29], ISBN 978-0-691-14039-1, MR 2513751, (原始内容存档于2020-07-14) .